Bizarre travelling flame discovery

Steve Mould
20 Apr 202414:34

Summary

TLDREn el video, el presentador explora un fenómeno curioso: un anillo de combustible para mechero que arde en llamas giratorias. Después de recibir un diseño de un suscriptor, experimenta con diferentes formas y tamaños de surcos para optimizar el efecto. Descubre que un surco de cinco milímetros de ancho con una sección transversal semicircular es el óptimo. Las llamas giran porque el vapor de combustible se excita y se propaga, pero no puede reexcitarse inmediatamente. También presenta otros diseños intrigantes, como un anillo dividido y una espiral, y discute cómo estos fenómenos se relacionan con los medios excitables en la naturaleza.

Takeaways

  • 🔥 El experimento inicial consiste en verter fluido de encendedor en un surco en forma de anillo y luego prenderlo fuego, lo que causa que la llama gire alrededor.
  • 🔍 El fenómeno es un ejemplo de un medio excitante, un sistema que puede cambiar a un estado excitado y luego regresar a un estado no excitado después de un tiempo de refractario.
  • 🔧 El creador experimenta con diferentes diseños de CAD para optimizar el surco, encontrando que un ancho de 5 milímetros es el óptimo para mantener la llama girando.
  • 💡 La explicación del comportamiento de la llama se basa en la evaporación del fluido de encendedor, que crea una mezcla de hidrocarburos y oxígeno que se quema.
  • 🔄 El fenómeno es similar a un mecha en un círculo que se regenera a medida que la llama gira, permitiendo que la llama continúe moviéndose sin extinguirse.
  • 🌐 Los medios excitantes son comunes en la naturaleza, como en la fibrilación cardíaca, la propagación de incendios forestales y la infección de la lengua geográfica.
  • 💡 El experimentador también probó diseños más complejos, como anillos divididos, espirales y figuras de ocho, con resultados interesantes y comportamientos de llama únicos.
  • 💡 En un diseño de espiral, la llama puede circular continuamente si se agrega un círculo adicional que alimenta la llama a lo largo de la espiral.
  • 💡 El experimentador sugiere que estos experimentos pueden ser reproducidos por adultos responsables y anima a los espectadores a enviar ideas para nuevos diseños.
  • 💡 El video está patrocinado por Jane Street, una empresa de comercio cuantitativo que ofrece programas educativos para estudiantes preuniversitarios y universitarios interesados en tecnología y resolución de problemas.

Q & A

  • ¿Qué es un medio excitante?

    -Un medio excitante es algo que tiene el potencial de cambiar a un estado de excitación. En el caso del experimento con el fluido encendedor, el vapor de hidrocarburos tiene el potencial de estar en llamas. Además, después de ser excitado, no puede ser excitado de inmediato nuevamente, y después de un tiempo de refractario, vuelve a ser susceptible de ser excitado.

  • ¿Por qué el fuego gira en círculos en la bandeja?

    -El fuego gira en círculos porque el vapor de fluido encendedor sobre la bandeja se calienta y evapora, creando un ciclo continuo de combustión. Cuando una parte del vapor se quema, las partes vecinas se vuelven excitables y el fuego se propaga en un círculo. Esto se debe a que el tiempo que tarda el fuego en dar una vuelta completa es suficiente para que el vapor se regenere y vuelva a ser inflamable.

  • ¿Qué sucede si la bandeja es demasiado ancha?

    -Si la bandeja es demasiado ancha, se genera demasiado vapor, lo que provoca una llama más caliente y una evaporación más rápida. Esto hace que el fuego se mantenga en un lugar específico en lugar de circular, ya que hay suficiente combustible para mantener la llama sin moverse.

  • ¿Cómo influye la forma de la bandeja en el comportamiento del fuego?

    -La forma de la bandeja, como su ancho y la forma de la abertura, afecta el comportamiento del fuego. Un ancho óptimo de la bandeja es de aproximadamente cinco milímetros. Si la abertura es demasiado pequeña, el fuego tarda en encenderse y se apaga rápidamente. Si es demasiado grande, el fuego se extiende por toda la bandeja en lugar de circular.

  • ¿Qué es el tiempo de refractario en un medio excitante?

    -El tiempo de refractario es el período durante el cual un medio excitante no puede ser excitado nuevamente después de haberlo sido una vez. En el caso del fuego en la bandeja, este tiempo es crucial para que el vapor se regenere y el fuego pueda continuar su ciclo circular.

  • ¿Qué otros ejemplos de medios excitantes se mencionan en el video?

    -Otros ejemplos de medios excitantes incluyen la fibrilación cardiaca, una infección llamada lengua geográfica, burbujas en una taza de chocolate caliente, olas mexicanas en estadios deportivos y incendios forestales.

  • ¿Cómo se puede forzar una llama única en la bandeja?

    -Se puede forzar una llama única cubriendo parcialmente la bandeja con la mano justo al lado del punto de ignición y luego retirándola rápidamente. Esto bloquea uno de los flujos de llama y puede hacer que solo una llama continúe su recorrido.

  • ¿Por qué no funciona bien una bandeja con una abertura muy grande?

    -Una abertura muy grande en la bandeja permite que el fuego se propague rápidamente y se convierta en una llama grande en lugar de circular. Esto se debe a que hay demasiado vapor disponible para quemarse en un solo lugar, lo que impide que el fuego se mueva en un círculo.

  • ¿Qué diseño de bandeja resultó ser el óptimo para el experimento?

    -El diseño óptimo fue una bandeja de cinco milímetros de ancho con una sección transversal semicircular. Este diseño permitió que el fuego circulara de manera más eficiente y duradera.

  • ¿Cómo se relacionan los incendios forestales con los medios excitantes?

    -Los incendios forestales pueden considerarse un ejemplo de medio excitante, ya que el bosque puede estar en un estado de 'excitación' al estar en llamas. Después de un incendio, el bosque tiene un tiempo de refractario mientras crece nuevamente antes de que otro incendio pueda propagarse.

Outlines

00:00

🔥 Experimentos con fluido inflamable

El presentador del video comienza explorando un fenómeno curioso: al verter fluido inflamable en una bandeja en forma de anillo y encenderlo, la llama gira alrededor del anillo en lugar de quemarse de manera uniforme. Esto lo lleva a investigar sobre 'medios excitables', que son sistemas que pueden cambiar a un estado excitado y luego regresar a un estado normal después de un tiempo de refractariedad. Después de recibir un diseño de Rudy Stevens, quien descubrió este fenómeno accidentalmente, el presentador colabora con Oscar Morris para crear archivos CAD parametrizados y experimentar con diferentes variables como el ancho del anillo y el tamaño de la abertura. Descubre que un ancho de cinco milímetros es óptimo para mantener la llama girando. Explica que el fluido inflamable se evapora y forma una mezcla de hidrocarburos y oxígeno que se quema, y que el anillo delgado de vapor permite que la llama se mueva alrededor del anillo en lugar de quemarse en un solo lugar. Finalmente, logra hacer que dos llamas giran al mismo tiempo y explica cómo el fenómeno se asemeja a una mecha que se regenera a medida que la llama avanza.

05:01

🔄 Medios excitables y aplicaciones

En esta sección, el presentador compara el fenómeno de la llama giratoria con un bucle de mecha que se regenera y con una serie de dominós que se levantan nuevamente. Explica que un anillo más ancho produce más vapor y una llama más caliente, lo que permite que la llama se mantenga en un solo lugar. También menciona que un anillo con paredes altas funciona mejor porque mantiene la llama a cierta distancia del líquido, evitando una evaporación excesiva. Define un 'medio excitable' como algo que puede cambiar a un estado excitado y luego regresar a un estado normal después de un tiempo de refractariedad, y cómo el anillo de fluido inflamable cumple con estos criterios. Da ejemplos de otros medios excitables en la naturaleza, como la fibrilación cardiaca, una infección llamada lengua geográfica y burbujas en una taza de chocolate caliente. Incluso menciona que los mexicanos en los estadios deportivos también pueden considerarse un medio excitable. Finalmente, discute una pregunta sobre la posibilidad de un incendio forestal continuo en un bosque en forma de anillo, calculando que el perímetro necesario sería de 87,600 kilómetros, lo cual es más grande que la circunferencia de la Tierra.

10:01

🎨 Diseños creativos y patrocinio

El presentador concluye el video mostrando diseños más complejos creados por Oscar, como anillos que se separan y vuelven a unirse, espirales y formas de ocho. Describe cómo estos diseños pueden producir llamas que cambian de dirección o generan nuevas llamas en puntos específicos. Muestra un diseño en el que una llama gira alrededor de un anillo central y dispara llamas a través de los brazos. También menciona un diseño de espiral modificado para mantener la llama en movimiento. Aunque hay comportamientos extraños en el centro debido al fluido restante, el diseño funciona como se esperaba. Invita a los espectadores a imprimir estos diseños por sí mismos y a enviar ideas adicionales a través del correo electrónico o el servidor de Discord. El video está patrocinado por Jane Street, una empresa de comercio cuantitativo que ofrece programas educativos para estudiantes preuniversitarios y universitarios en Nueva York y Londres. Alienta a los espectadores a aplicar a estos programas y a visitar el enlace en la descripción para obtener más información. Finaliza el video con una mención de una camiseta de Jane Street que muestra cómo se mueven las partículas en una cámara de nubes, y cómo esto se relaciona con la ciencia y la tecnología.

Mindmap

Keywords

💡Medio excitable

Un medio excitable es un sistema que tiene la capacidad de cambiar a un estado de excitación, pero no puede volver a ser excitado inmediatamente después de haberlo estado. En el contexto del video, el vapor de fluido de encendedor es un medio excitable, ya que puede estar en llamas, pero una vez que se ha quemado, no puede volver a estar en llamas de inmediato. Esto se relaciona con el tema principal del video, que explora cómo el fluido de encendedor en un surco circular puede crear llamas que giran continuamente.

💡Fluido de encendedor

El fluido de encendedor es una sustancia altamente volátil que se evapora rápidamente y puede ser fácilmente inflamada. En el video, se utiliza para crear llamas en un surco circular. El fluido de encendedor es esencial para el experimento, ya que su evaporación constante y la mezcla con el oxígeno en el aire permiten que la llama se mantenga y se propague alrededor del surco.

💡Surco

Un surco es un canal o depresión en una superficie. En el video, el surco es el lugar donde se vierte el fluido de encendedor. La forma y el tamaño del surco son cruciales para el comportamiento de la llama. Por ejemplo, un surco demasiado ancho puede causar que todo el fluido se prenda en llamas, mientras que uno demasiado estrecho puede hacer que la llama no dure mucho tiempo.

💡Llama giratoria

Una llama giratoria es una llama que se mueve en círculos alrededor de un surco circular. En el video, se explora cómo se puede crear una llama giratoria al encender el fluido de encendedor en un surco. La llama puede girar continuamente porque, mientras se quema, el fluido de encendedor se evapora y se reabastece en el punto de inicio, permitiendo que la llama continúe.

💡CAD parametrizado

El CAD parametrizado es un tipo de diseño asistido por computadora que permite modificar variables específicas para cambiar el diseño de un objeto. En el video, se utiliza un archivo CAD parametrizado para ajustar el tamaño del surco, la anchura del anillo y el tamaño de la abertura. Esto permite experimentar con diferentes configuraciones para encontrar la óptima para crear llamas giratorias.

💡Refractario

El término 'refractario' se refiere al tiempo que un medio excitable necesita para volver a ser susceptible de ser excitado después de haber estado en un estado de excitación. En el contexto del video, el refractario es el tiempo que el vapor de fluido de encendedor necesita para volver a ser inflamable después de haberse quemado. Esto es crucial para entender por qué la llama puede girar continuamente en el surco.

💡Automata celular

Un automata celular es un modelo matemático que simula la evolución de un sistema basado en reglas simples aplicadas a celdas en una rejilla. En el video, se compara el comportamiento de la llama giratoria con un automata celular, ya que ambos se basan en reglas simples para crear patrones complejos. El ejemplo del 'Juego de la Vida' se menciona para ilustrar cómo un sistema simple puede dar lugar a comportamientos interesantes.

💡Oxígeno

El oxígeno es un gas esencial para la combustión. En el video, se menciona que el oxígeno en el aire se mezcla con los vapores de fluido de encendedor para permitir que la llama se mantenga. La cantidad de oxígeno disponible puede afectar el comportamiento de la llama, especialmente en surcos con paredes altas que pueden limitar el suministro de oxígeno.

💡Vapor

El vapor es el estado gaseoso de una sustancia que normalmente es líquida a temperatura ambiente. En el video, los vapores de fluido de encendedor son los que se inflaman para crear la llama. La evaporación constante del fluido de encendedor produce vapores que se mezclan con el oxígeno en el aire, lo que permite que la llama se mantenga y se propague.

💡Configuración óptima

La configuración óptima se refiere a la combinación de variables que produce el mejor resultado en un experimento. En el video, se encuentra que la configuración óptima para crear llamas giratorias es un surco de cinco milímetros de ancho con una sección transversal semicircular. Esta configuración permite que el fluido de encendedor se evapore a una tasa adecuada para mantener la llama girando.

💡Experimento

Un experimento es un procedimiento llevado a cabo con el propósito de descubrir algo nuevo o verificar una teoría. En el video, el experimento consiste en verter fluido de encendedor en diferentes tipos de surcos y observar cómo se comportan las llamas. A través de estos experimentos, se exploran las propiedades de los medios excitables y cómo se pueden manipular para crear llamas giratorias y otros patrones interesantes.

Highlights

El experimento de verter fluido inflamable en una bandeja en forma de anillo y luego encenderlo crea una llama que gira alrededor.

Este fenómeno llevó a investigar sobre los llamados 'medios excitables', que son sistemas que pueden cambiar a un estado excitado y luego regresar a un estado normal.

Se utilizó un archivo CAD parametrizado para ajustar variables como el tamaño de la bandeja, el ancho del anillo y el tamaño de la abertura.

Se descubrió que un ancho de bandeja de cinco milímetros es el óptimo para crear una llama giratoria sostenible.

El tamaño de la abertura también es crucial: una abertura demasiado grande o demasiado pequeña afecta la duración y el comportamiento de la llama.

El fluido inflamable no se quema directamente, sino que su vapor se mezcla con el oxígeno y se enciende.

La llama puede circular continuamente porque el fluido se evapora a una tasa constante, permitiendo que la llama se mantenga encendida.

Este sistema es un ejemplo de un medio excitante, similar a fenómenos biológicos como la fibrilación cardíaca o la propagación de una infección en la lengua geográfica.

Se experimentó con diseños más complejos, como anillos divididos y luego unidos, espirales y formas de ocho.

En los diseños de espiral, se crearon llamas que viajaban a lo largo de la espiral y luego se extinguían al llegar al final.

Se descubrió que en intersecciones, a veces se forman llamas sostenibles que actúan como puntos de generación de más llamas.

Se propuso un diseño en el que una llama circula alrededor de un anillo central y dispara llamas a lo largo de los brazos.

Se calculó que un bosque en forma de anillo tendría que tener una circunferencia de 87.600 kilómetros para sostener un incendio continuo, lo cual es más grande que la circunferencia de la Tierra.

Se invitó a los espectadores a enviar diseños propios para experimentar con llamas en diferentes formas.

El video está patrocinado por Jane Street, una empresa de comercio cuantitativo que ofrece programas educativos para estudiantes preuniversitarios y universitarios.

Transcripts

00:00

(upbeat jazz music)

00:08

- Watch what happens when I pour lighter fluid

00:09

into this ring-shaped trough and then set light to it.

00:12

Look, the flame goes round and round.

00:15

Isn't that weird?

00:16

I really wanted to figure out what was going on,

00:17

and in doing so, I fell down a bit of a rabbit hole

00:20

about things called excitable mediums.

00:23

Excitable mediums are really interesting,

00:25

and by the end I had a handful of designs

00:28

that made the flames do really bizarre things.

00:31

This one in particular is a lot of fun,

00:33

but first, why was I dowsing my 3D prints

00:37

in lighter fluid in the first place?

00:38

Well, it's actually something one of my subscribers noticed,

00:41

and they sent me an email.

00:42

Rudy Stevens designed the part as a cap

00:45

for a small, closed ecosystem he was working on.

00:47

To make it a snug fit, he decided to heat it up

00:50

and mold it in place.

00:51

Using lighter fluid for the task,

00:53

he stumbled upon this weird phenomenon,

00:55

so, of course, I said, "That's amazing.

00:57

"Please send me the file so I can try it for myself,"

01:00

and, you know, it worked like a charm,

01:02

but it got me thinking, is this trough optimal?

01:05

Like, it can be quite hard to get the flame started,

01:08

and it doesn't always burn for very long once it is.

01:11

So, I asked Oscar Morris to design me

01:13

a parameterized CAD file so I could tweak the variables

01:17

and see what effect that had.

01:18

This is what Oscar does for a living, by the way.

01:20

The link to his website in the description.

01:22

See how I can change the size of the trough,

01:25

the width of the ring, the size of the opening.

01:27

I can also change the angle of the opening.

01:30

I wanted to have that ability,

01:31

because you'll notice in Rudy's design

01:33

that the opening is pointing inward slightly,

01:35

and I wondered if that was important.

01:37

The first thing I varied was just the width of the trough,

01:40

but I also varied the size of the ring slightly,

01:42

so I could nest them all together on the print bed

01:45

and print them at the same time.

01:46

I don't think that made much of a difference,

01:48

and it turns out there is a bit

01:49

of a sweet spot around five millimeters.

01:51

If the trough is too wide,

01:53

the whole thing just catches fire

01:55

instead of forming, like, a whizzing flame,

01:58

and if the trough is too small, well, it works,

02:01

but it doesn't last very long.

02:02

With the width of the trough fixed at five millimeters,

02:05

I then varied the size of the opening.

02:07

With a very small opening,

02:08

it's hard for the lighter fluid to catch on fire.

02:11

When it does, you get a small flame

02:13

that seems to travel very slowly for a short time

02:15

and then go out.

02:16

Conversely, if the trough is too open,

02:18

the whole thing tends to set on fire

02:20

instead of having a flame whizzing round.

02:22

It's a bit like when the trough was too wide,

02:25

you can get a whizzing flame eventually

02:27

when there's only a bit of lighter fluid,

02:29

but then it doesn't last very long.

02:31

I also thought it'd be interesting to try a small opening,

02:33

but where the width of the trough is increased

02:36

until that small opening is five millimeters,

02:39

but it didn't do anything interesting.

02:40

Like, it shows some of the same behavior,

02:43

but just in little bursts, and it's not sustainable.

02:46

Making the opening point inwards or outwards

02:49

didn't seem to make a difference, and in the end,

02:51

the optimum configuration seemed to be

02:54

a trough that was five millimeters wide

02:57

with a semi-circular cross-section.

02:59

I managed to get two flames going around at the same time

03:02

at one point, not sure how I managed that.

03:04

So, what's going on?

03:05

Well, when you burn lighter fluid,

03:07

you're not actually burning the liquid.

03:09

Instead, because the lighter fluid is really volatile,

03:12

it's constantly evaporating.

03:15

That's why it has such a strong smell.

03:17

So, above this little pool of lighter fluid,

03:19

there's a whole bunch of short-chain hydrocarbon molecules,

03:23

whizzing about and mixing with the oxygen in the air,

03:26

so when a flame is introduced,

03:28

that mixture of hydrocarbon gas and oxygen ignites.

03:32

The heat from the burning vapor

03:34

increases the rate of evaporation,

03:36

so that you have a steady source of new vapor

03:38

to keep the fire going.

03:39

It's similar to how a candle works, actually,

03:41

except that with a candle,

03:43

the flame first melts the solid wax,

03:45

which is then drawn up through the wick by capillary action

03:49

and then vaporized before being burnt in the air.

03:53

My hypothesis is that when you have

03:55

a very thin reservoir of lighter fluid like this,

03:58

then you only have a thin ring of vapor above the liquid.

04:01

So, when it's ignited, the flame isn't as hot,

04:05

which means the evaporation rate of the liquid fuel

04:07

doesn't increase that much,

04:08

and so the flame can't be maintained in that spot,

04:11

but to the left and right of that initial flame,

04:13

there's all this unburnt vapor,

04:15

so you get two flames running around the ring,

04:18

and they die when they meet at the opposite side.

04:21

So, that ring of vapor is a bit like a fuse,

04:23

arranged into a ring.

04:24

If you light it at one point, it travels around.

04:27

If you keep relighting it,

04:29

eventually, you get one flame going round on its own,

04:32

presumably because of some imbalance in the reservoir

04:35

or something like that.

04:36

I had some success forcing a single flame by putting my hand

04:39

over the ring just to one side of the ignition point,

04:42

then quickly removing my hand after it had blocked

04:44

one of the flames,

04:45

but why does it keep going round and round?

04:47

Well, brilliantly, in the time it takes for the flame to do

04:50

one full circuit of the ring,

04:53

enough lighter fluid has evaporated at the starting point

04:56

for the flame to be able to continue,

04:58

and so you get this flame that whizzes

05:00

round and round and round.

05:01

It's a bit like if you had a loop of fuse,

05:03

but somehow, by the time the flame got back round

05:06

to where it started,

05:08

the fuse had, like, regrown or something.

05:11

It's like knocking down a loop of dominoes,

05:12

except where you've got some mechanism running behind,

05:16

putting them back up again.

05:17

In other words, this mad contraption from JK Brickworks,

05:21

a link to that video in the card in the description.

05:23

The vapor explanation would also explain

05:25

why it doesn't work particularly well

05:27

when the trough is too wide.

05:29

A wider trough means more vapor, which means a hotter flame,

05:32

which means faster evaporation,

05:34

and so the flame can maintain itself in that position.

05:37

It also explains why a trough with high walls works better.

05:41

It puts a bit of distance between the flame and the liquid,

05:44

so that the heat from the flame

05:45

can't cause too much additional evaporation.

05:48

That's compared to what we saw when the trough was shallow,

05:51

and the flame was just everywhere all at once,

05:54

but presumably, if you close the trough too much,

05:56

then you have an issue with oxygen supply maybe,

06:00

I'm not sure.

06:00

So, this ring of lighter fluid, it turns out,

06:03

is an example of an excitable medium.

06:06

An excitable medium is something that has the potential

06:09

to switch to an excited state.

06:12

In this case, it's the hydrocarbon vapor

06:14

that has the potential to be on fire.

06:17

That's not the full definition, though.

06:19

There are three other criteria

06:20

that make it an interesting subject.

06:23

The first is that after it has been excited,

06:25

it can't be excited again right away.

06:27

The second characteristic is that

06:29

after a certain amount of time,

06:31

the medium is once again excitable.

06:33

That's called the refractory time,

06:35

and crucially, any part of the medium will become excited

06:38

if a neighboring part of the medium is excited.

06:40

It's such a simple definition, but it fully explains

06:43

the fire going round and round the ring,

06:45

and it's interesting that Rudy stumbled upon

06:47

just the right parameters for an excitable medium to emerge,

06:51

a thin enough channel,

06:52

so that the vapor isn't excitable immediately

06:55

after it catches fire,

06:56

and a ring with long enough circumference

06:58

that by the time one circuit is completed,

07:01

the refractory time of the medium has passed,

07:04

and the gas above the ring is once again excitable.

07:06

It's kind of reminiscent of cellular automata,

07:10

interesting movements that arise from simple rules.

07:14

You're probably familiar with the Game of Life,

07:16

for example, but this is a cellular automata model

07:19

of an excitable medium,

07:21

and it evolves in these interesting ways.

07:23

There's lots of examples in biology.

07:24

Signaling in organisms can often be modeled

07:27

as an excitable medium.

07:28

Heart fibrillation is an example

07:30

of a pathological excitable medium.

07:32

There's an infection called geographic tongue,

07:35

and it's believed to be a very slow example

07:38

of an excitable medium.

07:39

The infection spreads, the tongue recovers,

07:42

can't be infected again immediately,

07:44

but after some refractory time, the infection can come back,

07:47

and you get this complex pattern on the tongue.

07:50

Someone called Ollie sent me this video of the bubbles

07:53

on the surface of a hot chocolate collapsing.

07:55

The bubbles are slowly evaporating, so they're ready to pop,

07:58

which is to say they are excitable,

08:01

and to some extent each bubble is being supported

08:04

by its neighboring bubbles, so if one bubble collapses,

08:07

it's likely that the other bubbles around it will collapse,

08:10

and so it spreads as this pulse wave

08:12

across the surface of the hot chocolate.

08:14

Sometimes, you think, "That's interesting enough

08:16

"for someone to write a paper about,"

08:18

and then you find out they already have.

08:20

Mexican waves in sports stadiums are another example.

08:23

The people are the excitable medium in that case,

08:26

and just like with the lighter fluid ring,

08:28

it's possible to get a wave

08:29

that goes round and round and round, and forest fires.

08:32

It's possible for a forest to be

08:34

in the excited state of on fire,

08:36

and it fulfills all the other criteria, too,

08:39

it's just that the refractory time is incredibly long.

08:42

The forest has to regrow before another pulse wave

08:45

can pass through it.

08:46

On our podcast, Matt Parker asked the important question,

08:49

"How large would a ring-shaped forest need to be

08:51

"to sustain a continuous forest fire

08:53

"going round and the ring forest,

08:56

"just like the flame going round and round

08:59

"the ring of lighter fluid?"

09:00

The podcast is called, "A Podcast of Unnecessary Detail,"

09:03

by the way, and one of our listeners went ahead

09:05

and did the calculations.

09:06

This is very rough,

09:07

but the front of a forest fire progresses

09:11

at about 10 kilometers per hour,

09:13

which is surprisingly fast, actually,

09:15

and some forest fires happen as often as annually,

09:19

which means the refractory time can be as little

09:21

as one year or 8,760 hours.

09:26

So, if the fire front travels at 10 kilometers per hour,

09:30

and the refractory time of a forest is 8,760 hours,

09:36

then the circumference of a ring-shaped forest

09:38

would need to be 87,600 kilometers.

09:41

The circumference of the Earth is less than half that,

09:45

at 40,000 kilometers,

09:46

so if there was a forest all the way around

09:49

the circumference of the Earth,

09:50

it would not be long enough to sustain a never-ending fire

09:54

that goes round and round and round,

09:56

but I mean, you could zigzag the forest,

09:58

or maybe you could make the forest out of bamboo,

10:00

because that grows back quickly,

10:01

but anyway, there you go.

10:02

That is how excitable mediums can lead to spinning flames.

10:06

Finally, I got Oscar to design

10:07

a few more cool things for me.

10:09

I wanted to see what would happen if the ring split in two

10:12

and then came back together.

10:13

That's cool, isn't it?

10:15

It's interesting to see that you occasionally get,

10:17

just very briefly, a sustained flame in one position,

10:22

and it can cause other flames to change direction

10:25

or sometimes it can act almost like a spawning point,

10:29

so you get more and more flames

10:31

coming from that one location.

10:33

And here's a spiral.

10:38

(lighter clicks)

10:41

And here's a figure-eight-shaped trough.

10:44

I really didn't think this would work,

10:46

because obviously there's a raised section

10:49

where one track goes over the other,

10:51

so you have it slanting either side,

10:53

and I thought the lighter fluid would drain away from there.

10:56

Like, it definitely does,

10:58

but I guess enough of the lighter fluid

11:00

sticks around up there for the fire to go round and round

11:04

at least a few times before it goes out.

11:07

Then, there's this design, that has a flame

11:09

going round a central ring,

11:10

and every time it passes one of the arms,

11:13

a flame shoots out across the arm.

11:15

That's cool, isn't it?

11:17

And here's a modification of the spiral.

11:20

The issue with the spiral is it's not a closed loop,

11:22

so you set fire to one end, it travels round and round

11:26

until it reaches the other end, and then it stops.

11:29

Wouldn't it be good if you could keep it going somehow?

11:32

That's what the extra circle is for.

11:35

The flame that goes round around the circle

11:36

should keep firing flames down the spiral.

11:40

In reality, when you have these junctions,

11:41

you often end up with a sustained flame at that junction,

11:45

and that seems to be powering

11:47

the continuous supply of flames around the spiral,

11:51

but eventually, as the lighter fluid

11:52

dries out more and more, the design works as intended.

11:56

Now, there is still quite a bit of lighter fluid

11:57

in the middle, so there's a bit of strange behavior there.

12:00

It even sends one flame back in the opposite direction.

12:03

If you want to print out any of these for yourself,

12:04

there's a link in the description for that.

12:07

Lighter fluid is dangerous,

12:08

so that would be something for responsible adults only,

12:12

and if you have any ideas for tracks

12:14

that you would like to see, send me an email,

12:16

tell me on my Discord server.

12:17

For example, just before I was about to export this video,

12:20

Rudy sent me another design.

12:23

This is the flames solving a maze.

12:26

How cool is that?

12:26

It's actually quite nice T-shirt.

12:29

I don't really go for science T-shirts.

12:30

It's quite subtle, though.

12:31

This video is sponsored by Jane Street.

12:33

Jane Street is a quantitative trading firm

12:35

with offices in New York, London, Hong Kong,

12:38

Amsterdam, and Singapore.

12:39

They use techniques from machine learning,

12:40

distributed systems, programmable hardware,

12:42

and statistics to trade on markets around the world.

12:45

They're also a bunch of people who love

12:47

solving interesting problems, and they're passionate

12:50

about a lot of the same things that we are.

12:52

For an example of their nerdiness,

12:54

they designed this T-shirt, look.

12:56

It shows, like, how particles move in a cloud chamber.

13:02

You know, if you've got, like, maybe a magnetic field

13:05

and a particle whizzes in, it's going to spiral,

13:07

because of the magnetic field,

13:08

but some of them aren't, if they're not charged,

13:10

and it kind of slows them down, traps them,

13:12

and you use it in science, like in the large hadron collider

13:15

and things like that, but like embedded in there

13:18

is the Jane Street logo.

13:19

They currently have a few educational programs

13:21

that are accepting applications in both their New York

13:24

and London offices for pre-university

13:26

and university students.

13:28

These programs are part of Jane Street's commitment

13:30

to give as many people as possible a chance to learn

13:33

more about what they do.

13:34

The programs themselves are all a bit different,

13:36

but focus on topics that you might be interested in,

13:39

things like complex mathematical theory,

13:41

programming, statistics and more,

13:42

and it's definitely worth saying

13:43

you don't need a background in finance to apply.

13:46

Jane Street is looking for curious people

13:48

from any background with a passion for technology

13:51

and creative problem solving.

13:52

In other words, people like you.

13:54

Check out the link in the description now

13:56

to see what opportunities are currently open

13:58

and to see if any of them might be for you.

14:00

They currently have three programs open in NYC

14:02

and one in London,

14:04

and applications are closing in just a few weeks,

14:06

so check out Jane Street today.

14:08

Hope you enjoyed this video.

14:09

If you did, don't forget to hit subscribe

14:11

and the algorithm thinks you'll enjoy this video next.

14:14

(upbeat jazz music)

Rate This

5.0 / 5 (0 votes)

Etiquetas relacionadas
ExperimentosCombustibleLlamasMedios ExcitablesDiseñoQuímicaFísicaEducaciónTecnologíaInnovaciónCiencia