Microsoft's New PHI-3 AI Turns Your iPhone Into an AI Superpower! (Game Changer!)
Summary
TLDR微软推出的53迷你AI模型是一次重大创新,它将高级AI技术缩小到可以放入口袋的大小,甚至能在iPhone 14上运行,而不影响用户隐私。该模型拥有3.8亿参数,经过3.3万亿token的训练,性能可与更大的模型如Mixr 8x7 B和GPT 3.5相媲美。53迷你AI模型的训练重点在于提升数据的质量和有用性,而非仅仅增加模型大小。它采用了Transformer解码器,具有4K的默认上下文长度,能够处理广泛的信息。此外,该模型设计考虑了开源社区,与Llama 2模型结构相似,并使用了相同的分词器,识别词汇量达32,610。53迷你AI模型在iPhone 14上运行时,只需4位和大约1.8GB的空间,无需互联网连接即可每秒生成超过12个token,实现了高级AI功能的离线使用。在安全性测试中,53迷你AI模型在多轮对话中产生有害内容的风险较低。微软还开发了53小型和53中型模型,分别拥有7亿和14亿参数,使用相同高质量的数据进行训练。53迷你AI模型的开发注重社区参与和支持,设计灵活,支持长文本处理。微软的这一创新展示了AI技术在个人设备上的实践应用,预示着更智能、更适应性、更个性化的技术将如何融入我们的日常生活。
Takeaways
- 📱 微软推出了一款名为53 Mini的小型AI模型,它能够运行在iPhone 14上,提供先进的AI能力,同时保护用户隐私。
- 🔍 53 Mini拥有3.8亿参数,通过训练3.3万亿个token,使其性能与更大的模型如Mixr 8x7 B和GPT 3.5相当。
- 📈 微软通过改进训练数据的质量和有用性,而不是简单地增加模型大小,实现了性能提升。
- 🌐 53 Mini使用精心选择的网络数据和由其他语言模型生成的合成数据,提高了模型理解和生成类似人类文本的能力。
- 🔩 该模型采用Transformer解码器构建,具有4K的默认上下文长度,即使模型较小,也能处理广泛且深入的信息。
- 🔗 53 Mini旨在帮助开源社区,与Llama 2模型结构相似,并使用相同的tokenizer,识别32,610个词汇。
- 📊 53 Mini能够在iPhone 14的A16仿生芯片上直接运行,每秒生成超过12个token,无需互联网连接。
- 📈 53 Mini在内部和外部测试中表现强劲,在知名AI测试如MLU和MT Bench上与更大模型得分相当。
- 🔧 微软还开发了53 Small和53 Medium版本,分别拥有7亿和14亿参数,使用相同高质量数据进行更长时间的训练。
- 🔬 53 Mini在开发过程中进行了大量测试,以确保不产生有害内容,并通过安全检查和自动化测试来强化模型。
- 🌟 53 Mini的设计注重社区参与和支持,具有灵活性,包括能够处理长达128,000个字符的长文本的功能。
- ✅ 微软的53 Mini标志着在将强大的AI工具以实用的方式带入我们日常生活方面取得了重要进步。
Q & A
微软在人工智能领域做出了什么重大举措?
-微软开发了一款名为53 Mini的小型AI模型,它能够运行在普通智能手机上,如iPhone 14,提供先进的AI功能,同时不牺牲用户隐私。
53 Mini模型有多大的参数量,它与哪些大型模型的性能相当?
-53 Mini模型拥有38亿参数,并在3.3万亿个token上进行了训练,其性能可与Mixr 8x7 B和GPT 3.5等更大的模型相媲美。
53 Mini模型在数据训练方面有哪些突破?
-53 Mini模型的突破在于其训练数据的精心升级,微软投入了大量精力提高数据的质量和有用性,而不是仅仅增加数据量。
53 Mini模型是如何实现在iPhone 14上运行的?
-53 Mini模型通过智能设计,可以压缩到仅4位,并且只占用大约1.8GB的空间,能够在iPhone的A16仿生芯片上直接运行,无需互联网连接。
53 Mini模型在性能测试中的表现如何?
-53 Mini在内部和外部测试中表现出色,在诸如MLU和MT Bench等知名AI测试中得分与更大的模型一样高,展示了其架构的效率和训练制度的有效性。
微软是否还开发了53 Mini的更大版本?
-是的,微软还尝试了53 Mini的更大版本,称为53 Small和53 Medium,分别拥有70亿和140亿参数,并使用了更长时间的高质量数据训练。
53 Mini模型在安全性方面做了哪些测试?
-53 Mini模型在开发过程中进行了大量的测试,以确保它不会产生有害内容,包括彻底的安全检查、红队测试以及自动化测试。
53 Mini模型的设计如何支持开放源代码社区?
-53 Mini模型采用与Llama 2模型类似的设计,并使用相同的tokenizer,识别32,610个词汇和工具,旨在与开发者已经使用的工具兼容,并具有灵活性。
53 Mini模型在多语言支持方面有哪些进展?
-微软的开发团队对53 Mini模型在多语言支持方面的改进感到兴奋,早期的类似小型模型53 Small的测试已经显示出希望,尤其是当它包含多种语言的数据时。
53 Mini模型如何平衡AI的功率和大小?
-53 Mini模型通过数据优化实现了功率和大小的平衡,它以高效率和可访问性为特点,为更智能、更适应性强和更个性化的日常生活技术铺平了道路。
53 Mini模型的局限性是什么?
-由于尺寸较小,53 Mini模型的容量不如更大的模型,可能会在需要大量特定信息的任务上遇到困难,例如回答需要大量信息的复杂问题。
53 Mini模型对未来AI技术发展有何启示?
-53 Mini模型不仅是数据优化的突破,也是AI发展方向的标志。它表明即使是小型数据优化模型也能像更大的系统一样表现良好,这可能会激发整个技术行业的更多创新,并可能改变我们与技术互动的基本方式。
Outlines
📱 微软53迷你AI模型:口袋里的强大AI
微软推出了53迷你AI模型,这是一个小型但功能强大的AI模型,能够在iPhone 14上运行,提供先进的AI能力,同时保护用户隐私。该模型拥有3.8亿参数,经过3.3万亿个token的训练,性能可与更大模型如Mixr 8x7 B和GPT 3.5相媲美。53迷你的突破在于其训练数据的精心升级,微软专注于提高数据的质量和有用性,而非仅仅增加模型大小。该模型使用Transformer解码器构建,具有4K的默认上下文长度,能够处理广泛和深入的信息。此外,53迷你的设计旨在支持开源社区,与Llama 2模型结构相似,使用相同的tokenizer,识别词汇量为32,610。53迷你能够在iPhone 14上直接运行,占用空间仅1.8GB,无需互联网连接即可每秒生成超过12个token,实现高级AI功能的离线使用。在性能测试中,53迷你在MLU和MT Bench等知名AI测试中得分与大型模型相当,展示了其架构的效率和精心设计的训练制度的有效性。微软还尝试了53迷你的更大版本,53小型和53中型,分别有7亿和14亿参数,使用相同高质量数据进行更长时间的训练,结果表明模型越大,性能越好。53迷你的开发采用了分阶段的方法,结合了网络数据和合成数据,专注于逻辑思考和专业技能,这种逐步的方法帮助模型在不增加大小的情况下表现良好。
🔒 53迷你AI模型:安全性和隐私性
53迷你AI模型在安全性和隐私性方面也进行了深入考虑。微软团队进行了彻底的安全检查和自动化测试,以确保模型不会生成有害内容。在多次对话中,53迷你产生有害内容的风险低于其他模型。此外,53迷你的设计注重社区参与和支持,使用与Llama相似的设计,并确保与开发者已使用的工具兼容。模型设计灵活,包括长绳(long rope)功能,可以处理长达128,000个字符的文本。使用53迷你在iPhone 14上,可以轻松访问高级AI技术,同时增强隐私保护,因为所有处理都在手机上完成,无需将个人信息发送到远程服务器。尽管53迷你有许多优点,但由于其较小的尺寸,它可能在处理需要大量特定信息的任务时存在局限性,例如回答需要大量信息的复杂问题。然而,通过将模型连接到搜索引擎,可以在需要时检索信息,从而减轻这个问题。微软的开发团队对改进模型的多语言工作能力感到兴奋,早期的53小型模型测试显示出有希望的结果,特别是当它包含多种语言的数据时。这表明未来的模型版本可能会支持更多语言,使技术对全球人民更有用。微软通过展示一个小型数据优化模型可以像更大的系统一样表现良好,鼓励行业对AI模型的制造和使用方式进行不同的思考,这可能会带来新的创新方法,在以前因计算能力要求过高而无法使用的领域使用AI。53迷你不仅是数据优化的突破,也是AI发展方向的标志,它平衡了功率和尺寸,提高了效率和可访问性,为更智能、更适应性、更个性化的日常生活技术铺平了道路。
Mindmap
Keywords
💡AI
💡53 Mini
💡参数
💡隐私保护
💡Transformer解码器
💡数据优化
💡安全性测试
💡多语言支持
💡开源社区
💡长期记忆(Long Context)
💡数据集
Highlights
微软在人工智能领域取得了重大进展,推出了53迷你模型,将强大的AI技术缩小到可以放入口袋的大小。
53迷你模型可以在iPhone 14上运行,无需牺牲隐私即可带来先进的AI功能。
该模型拥有3.8亿参数,经过3.3万亿token的训练,性能可与更大的模型相媲美。
53迷你模型能够在常规智能手机上使用,无需额外的计算帮助。
模型的训练数据经过精心升级,强调数据质量而非数量是提高模型性能的关键。
53迷你模型使用Transformer解码器构建,具有4K的默认上下文长度。
模型设计考虑了开源社区,与Llama 2模型结构相似,使用相同的tokenizer。
53迷你模型能够在iPhone 14上直接运行,占用空间仅1.8GB。
该模型能够在不需要互联网连接的情况下,每秒产生超过12个token。
53迷你模型在AI测试中的表现与更大的模型相当,证明了其架构的效率和训练制度的有效性。
微软还尝试了53小型和53中型模型,分别有7亿和14亿参数,使用相同高质量数据进行更长时间的训练。
53迷你模型的训练采用了不同于传统方法的逐步优化,结合了网络数据和合成数据。
53小型模型使用tick token tokenizer,展示了微软对多语言处理的承诺。
团队进行了大量测试,以确保模型不会产生有害内容,并通过自动化测试进行了安全检查。
53迷你模型的设计灵活,支持长文本处理,最多可处理128,000个字符。
53迷你模型的创建鼓励社区参与,并支持开发者已经使用的工具。
尽管53迷你模型有许多优点,但由于其较小的尺寸,它在处理需要大量特定信息的任务时可能存在局限性。
微软的开发团队对53迷你模型在多语言工作能力上的改进感到兴奋,早期测试显示出有希望的结果。
微软通过53迷你模型展示了小型数据优化模型可以与更大的系统相媲美,鼓励行业重新思考AI模型的构建和使用方式。
53迷你模型不仅标志着数据优化的突破,也是AI发展方向的信号,平衡了功率、尺寸、效率和可访问性。
Transcripts
Microsoft just made a big move in the AI
World by shrinking powerful AI down to
fit right in your pocket with the 53
mini and I mean that literally this
little Powerhouse can run on your iPhone
14 bringing Advanced AI capabilities
without compromising your privacy it's a
GameChanger for anyone looking to use
advanced technology simply and securely
in the past developing AI meant creating
bigger and more complex systems with
some of the latest models having
trillions of parameters these large
models are powerhouses of computing and
have been able to perform complicated
tasks that are similar to how humans
understand and reason but these big
models need a lot of computing power and
storage usually requiring strong
cloud-based systems to work now with 53
mini there's a change this model fits an
advanced AI right in your hand literally
it has 3.8 billion parameters and was
trained on 3.3 trillion tokens making it
as good as much larger models like Mixr
8x7 B and even GPT 3.5 what's even more
impressive is that it can be used on
regular Smartphones without needing
extra Computing help one of the major
breakthroughs with this model is how
carefully its training data has been
upgraded instead of just making the
model bigger Microsoft put a lot of
effort into improving the quality and
usefulness of the data it learns from
during the training they understood that
having better data not just more of it
is key to making the model work better
especially when they have to use smaller
Compu computer systems 53 mini came
about by making the data set it learns
from bigger and better than the one its
older version f 2 used this new data set
includes carefully chosen web data and
synthetic data created by other language
models this doesn't just ensure the data
is top-notch but it also greatly
improves the model's ability to
understand and create text that sounds
like it was written by a human now the
53 Mini model is built using a
Transformer decoder which is a key part
of many modern language models and it
has a default context length of 4K this
means that even though it's a smaller
model it is still able to handle a wide
and deep range of information during
discussions or when analyzing data
Additionally the model is designed to be
helpful to the open-source community and
to work well with other systems it has a
similar structure to the Llama 2 model
and uses the same tokenizer which
recognizes a vocabulary of 32,610
skills and tools with 53 mini without
having to start from scratch one of the
coolest things about 53 mini is that it
can run right on your iPhone 14 thanks
to the smart way it's built it can be
squeezed down to Just 4 bits and still
only take up about 1.8 GB of space and
even with its small size it works really
well it can create more than 12 tokens
per second while running directly on the
iPhone's a16 bionic chip without needing
any internet connection what this means
is pretty huge you can use some really
Advanced AI features anytime you want
without having to be online this keeps
your information private and everything
runs super fast when it comes to how
well it performs 53 mini has really
shown its strength in both in-house and
outside tests it scores just as well as
bigger models do on well-known AI tests
like M mlu and Mt bench this
demonstrates not only the efficiency of
its architecture but also the
effectiveness of its training regimen
which was meticulously crafted to
maximize the models learning from its
enhanced data set now When developing
this they also tried out larger versions
of the model called 53 small and 53
medium which have 7 billion and 14
billion parameters respectively these
bigger models were trained using the
same highquality data but for a longer
time totaling 4.8 trillion tokens the
results from these models were actually
really good showing major improvements
in their abilities as they got bigger
for instance the 53 small and 53 medium
scored even higher on the mlu an Mt
bench test proving that making the
models bigger can be very effective
without using more data than necessary
but the way they trained the 53 mini was
different from the usual method of just
making models bigger and using more
computing power the training process
started with using web sources to teach
the model general knowledge and how to
understand language then it moved to a
stage where it combined even more
carefully chosen web data with synthetic
data focused on logical thinking and
specialized skills this care
step-by-step approach helped the model
perform really well without just making
it bigger in training the model they
also made use of the latest AI research
including new ways of breaking down text
into tokens and focusing the model's
attention for example the 53 small model
uses a tokenizer called tick token to
handle multiple languages better showing
Microsoft's commitment to improving how
the model Works in different languages
after the model's development the team
did a lot of testing to make sure it
wouldn't produce harmful content this
included thorough safety checks red
teaming where they tried to find
weaknesses and automated testing these
steps are very important as AI becomes a
bigger part of everyday gadgets and
handles more important tasks and 53 mini
has been shown to produce harmful
content less often than other models in
conversations that have multiple turns
this lower risk of the model saying
something inappropriate or harmful is
key for its use in the real world the
creation of 53 Mini also focused on
getting the community involved and
supporting them by using a design
similar to L and making sure it works
with tools developers already use plus
the model's design is flexible it
includes features like long rope which
lets the model handle much longer texts
up to 128,000 characters using the 53
mini on your iPhone 14 really changes
the game by making Advanced AI
technology easy to access right on your
phone and the best part is in my opinion
that it ramps up our privacy we don't
have to worry about sending our personal
info to far off servers to use AI apps
anymore everything happens right on our
phones which keeps our data safe and
private just the way it should be now
although 53 mini has many benefits like
all Technologies it has its limits one
big issue is that it doesn't have as
much capacity as larger models because
of its smaller size for example it might
struggle with tasks that need a lot of
specific information like answering
complex questions in a trivia game
however this problem might be lessened
by connecting the model to search
engines that can pull up information
when needed as shown in tests using the
hugging face chat UI looking ahead
Microsoft's development team is excited
about improving the model's ability to
work in multiple languages early tests
with a similar small model called 53
small have been promising especially
when it includes data from many
languages this suggests that future
versions of the feries could support
more languages making the technology
useful to people all over the world more
by showing that a smaller data optimized
model can perform as well as much bigger
systems Microsoft is encouraging the
industry to think differently about how
AI models are made and used this could
lead to new creative ways to use AI in
areas where it was previously too
demanding in terms of computing power
Microsoft's 53 mini marks an important
advancement in bringing powerful AI
tools into our daily lives in a
practical way as this technology keeps
improving it is set to broaden what we
we can do with our personal devices
enhancing our experiences and abilities
in new and exciting ways the ongoing
development of such models will likely
Inspire more Innovation throughout the
tech industry potentially transforming
how we interact with technology at a
basic level and when you think about it
the 53 mini isn't just a data
optimization breakthrough it's actually
a sign of where AI is headed it balances
power and size with efficiency and
accessibility setting the stage for
smarter more adaptive and personal techn
technology in our everyday lives all
right don't forget to hit that subscribe
button for more updates thanks for
tuning in and we'll catch you in the
next one
5.0 / 5 (0 votes)