Something Strange Happens When You Follow Einstein's Math

Veritasium
29 Apr 202437:02

Summary

TLDRLe script explore les mystérieux trous noirs, trous blancs et les wormholes à travers la théorie de la relativité générale d'Einstein. Il explique comment la gravité est médiée par la courbure de l'espace-temps et non par une action à distance. Le métrage présente les solutions de Schwarzschild et de Kerr, qui décrivent la structure et le comportement des trous noirs non-tournants et tournants respectivement. Il aborde également les implications physiques et théoriques, telles que les singularités, les horizons d'événements et les paradoxes liés au temps. Le script suggère que, bien que les trous noirs soient réels, les trous blancs et les wormholes traversables pourraient être des concepts purement théoriques, nécessitant une matière exotique pour leur stabilité.

Takeaways

  • 🌌 L'entrée dans un trou noir semble ralentir l'objet et le lumière provenant de celui-ci, jusqu'à ce qu'ils disparaissent complètement du champ de vision.
  • 🕒 La théorie de la relativité générale de Einstein explique comment la gravité est médiée par la courbure de l'espace-temps autour des masses.
  • 📚 L'équation de champ d'Einstein est une famille d'équations différentielles couplées qui décrivent la distribution de la matière et de l'énergie et la courbure de l'espace-temps résultante.
  • 🔍 La métrique de Schwarzschild est la première solution non triviale des équations d'Einstein, décrivant la courbure de l'espace-temps en dehors d'une masse sphériquement symétrique.
  • ⚫️ La découverte de la singularité au centre de la masse et à la distance de rayon de Schwarzschild a conduit à l'idée d'un trou noir, un objet dont l'intérieur est inabordable par la lumière.
  • 💥 L'étude des étoiles en fin de vie et la découverte de la limite de Chandrasekhar ont conduit à la compréhension que les étoiles massives pourraient s'effondrer en trous noirs.
  • 🌐 La représentation de l'espace-temps en diagramme de Kruskal-Szekers montre que la singularité d'un trou noir est en fait un moment final dans le temps plutôt que一个地方 dans l'espace.
  • 🌌 Le diagramme de Penrose, qui représente l'univers dans son ensemble, révèle que les trous noirs pourraient être connectés à des trous blancs et à des univers parallèles.
  • 🌀 La solution de Kerr pour les trous noirs tournoyants a introduit de nouvelles régions comme l'ergosphère et l'horizon interne, où l'on pourrait théoriquement éviter la singularité.
  • 🧩 La théorie de la relativité générale permet d'imaginer des ponts d'Einstein-Rosen, ou des trous noirs connectant des univers parallèles, bien que leur stabilité et leur existence soient incertaines.
  • 🚫 Les trous blancs, les trous de ver et les univers parallèles, bien que mathématiquement possibles, posent des défis considérables en termes de stabilité et de nécessité de matière exotique.

Q & A

  • Que se passe-t-il lorsqu'un objet traverse l'horizon des événements d'un trou noir?

    -Lorsqu'un objet traverse l'horizon des événements, il semble se figer dans le temps. La lumière du vaisseau devient plus faible et rougeâtre jusqu'à ce qu'elle disparaisse complètement de la vue. Cependant, si l'on pouvait voir la lumière, on verrait que tout ce qui est tombé dans le trou noir est figé sur son horizon.

  • Comment la théorie de la relativité générale d'Einstein a-t-elle amélioré la compréhension de la gravitation selon Newton?

    -La théorie de la relativité générale d'Einstein a expliqué que la gravité n'est pas médiée par une force à distance, mais plutôt par la courbure de l'espace-temps par la masse. Les corps ne s'attirent pas directement les uns les autres, mais suivent les chemins courbés dans l'espace-temps affectés par la masse.

  • Quelle est la forme de l'équation de champ d'Einstein et qu'est-ce qu'elle représente?

    -L'équation de champ d'Einstein est une famille d'équations couplées et différentielles qui, d'une part, décrit la distribution de la matière et de l'énergie, et, d'autre part, détermine la courbure de l'espace-temps résultante de cette distribution.

  • Comment la métrique de Schwarzschild décrit-elle la courbure de l'espace-temps autour d'une masse?

    -La métrique de Schwarzschild décrit comment l'espace-temps est presque plat loin de la masse et devient de plus en plus courbé en s'approchant d'elle, ralentissant le temps et attirant les objets à l'intérieur.

  • Quels sont les deux points problématiques de la solution de Schwarzschild?

    -Les deux points problématiques sont le centre de la masse, où r est égal à zéro et où la densité de matière devient infinie (singularité), et à une distance spéciale de la masse connue sous le nom de rayon de Schwarzschild, où la courbure de l'espace-temps devient si abrupte que la vitesse de fuite nécessaire est celle de la lumière.

  • Comment la limite de Chandrasekhar a-t-elle influencé notre compréhension de la fin de la vie d'une étoile?

    -La limite de Chandrasekhar a montré que la pression de dégénérescence des électrons a ses limites et ne peut soutenir les étoiles au-delà d'une certaine masse. Cela a conduit à la découverte de la pression de dégénérescence des neutrons, qui peut soutenir les étoiles plus massives, formant des étoiles à neutrons.

  • Quels sont les changements apportés par la solution de Kerr pour un trou noir tournoyant?

    -La solution de Kerr introduit plusieurs couches dans la structure du trou noir, le rend non sphériquement symétrique en raison du gonflement autour de l'équateur due à la rotation, et crée des régions nouvelles comme l'ergosphère et l'horizon intérieur où l'on peut éviter la singularité.

  • Comment la singularité dans un trou noir tournoyant est-elle différente de celle dans un trou noir non tournoyant?

    -Dans un trou noir tournoyant, la singularité n'est pas un point mais se développe en une bande circulaire. Il est même hypothétique que l'on pourrait en réalité traverser cette singularité sans temps se terminant.

  • Quels sont les défis pour l'existence réelle des trous blancs et des trous de ver?

    -Les défis incluent le fait que les solutions étendues maximales des trous noirs décrits par Schwarzschild et Kerr sont des solutions statiques et éternelles, sans mécanisme de formation. De plus, la présence d'une infinité de flux d'énergie le long de l'horizon intérieur dans les trous noirs tournoyants suggère que la singularité se ferme sur elle-même, empêchant le passage à travers.

  • Quelle est la nature de la matière exotique nécessaire pour maintenir un trou de ver stable?

    -Les trous de ver stables théoriques nécessitent une matière exotique avec une densité d'énergie négative pour prévenir leur effondrement. Cependant, il n'y a pas de preuve concrète de l'existence de tels matériaux et ils vont à l'encontre des lois actuelles de la physique.

  • Comment la découverte de la pression de dégénérescence des neutrons a-t-elle changé notre compréhension des étoiles massives au-delà de la limite de Chandrasekhar?

    -La découverte de la pression de dégénérescence des neutrons a montré que les étoiles massives au-delà de la limite de Chandrasekhar pourraient se soutenir en formant des étoiles à neutrons, où les neutrons, étant des fermions avec une masse beaucoup plus grande que celle des électrons, créent une pression de dégénérescence plus élevée.

  • Quels sont les implications de la théorie de la relativité générale pour l'existence des trous noirs, des trous blancs et des univers parallèles?

    -La théorie de la relativité générale, en particulier les solutions de Schwarzschild et Kerr, implique l'existence de trous noirs et de trous blancs, ainsi que la possibilité d'univers parallèles connectés par des trous de ver. Cependant, il y a des doutes quant à l'existence réelle de ces phénomènes en nature, en particulier en raison des défis physiques et mathématiques qu'ils posent.

Outlines

00:00

🌌 La théorie de la relativité générale et les trous noirs

Le paragraphe introduit les concepts fondamentaux de la théorie de la relativité générale d'Einstein, qui remédie à une faille de la gravité newtonienne. Newton avait compris que les masses s'attirent mutuellement, mais s'interrogeait sur la manière dont cela fonctionne à distance. Einstein a expliqué que la masse courbe l'espace-temps, et que cette courbure influence les autres masses, rendant ainsi inutile l'action à distance. Les équations de champ d'Einstein décrivent cette relation entre la distribution de la matière et l'espace-temps courbé. Cependant, ces équations sont complexes et nécessitent des solutions pour être comprises pleinement.

05:01

📊 La géométrie de l'espace-temps et les trous noirs

Ce paragraphe explique comment mesurer la séparation entre deux événements dans l'espace-temps, en l'absence ou en présence de masse. Il introduit le concept d'intervalle d'espace-temps et montre comment la courbure de l'espace-temps autour d'une masse affecte cette mesure. La première solution non triviale des équations d'Einstein, trouvée par Karl Schwarzschild, décrit comment l'espace-temps se courbe autour d'une masse sphérique symétrique. Cependant, cette solution révèle des singularités à r=0 et à la distance de Schwarzschild, où la courbure de l'espace-temps devient si abrupte que rien ne peut s'échapper, y compris la lumière, formant un trou noir.

10:01

🌟 La fin de la vie des étoiles et la naissance des trous noirs

Les astronomes ont étudié ce qui se passe à la fin de la vie d'une étoile. Lorsque la fusion nucléaire cesse, la pression de rayonnement qui équilibre la gravité disparaît, ce qui conduit à l'effondrement de la matière. La découverte de la pression d'électrons dégénérés par Ralph Fowler a permis de comprendre la formation des étoiles blanches. Cependant, Subrahmanyan Chandrasekhar a théorisé que cette pression a des limites, le fameux limite de Chandrasekhar, au-delà de laquelle même la pression d'électrons dégénérés ne peut empêcher l'effondrement d'une étoile, conduisant à la formation de trous noirs.

15:03

🔮 Les trous noirs et la perception de l'espace-temps

Ce paragraphe explore la perception d'un observateur extérieur d'un trou noir et la manière dont les photons émis par un objet tombant dans le trou noir sont affectés par la courbure de l'espace-temps. Il est expliqué que les photons deviennent rouges et faibles jusqu'à disparaître complètement, créant l'illusion que l'objet s'arrête au bord de l'horizon d'événement. Le paragraphe aborde également les difficultés rencontrées pour comprendre la formation des trous noirs et la manière dont les équations de Schwarzschild peuvent être interprétées pour comprendre cette perception.

20:04

🌐 La projection de l'espace-temps et la singularité

Le paragraphe explique que la représentation de l'espace-temps en deux dimensions est une projection近似 de la réalité en quatre dimensions. Il est similaire à la projection de la Terre en 2D sur une carte. La singularité à l'horizon d'événement d'un trou noir n'est pas une singularité physique, mais le résultat d'un choix de coordonnées inapproprié. La métaphore d'un waterfall est utilisée pour décrire comment l'espace se déplace vers l'intérieur du trou noir, et comment les photons doivent 'nager' contre ce flux pour s'échapper.

25:05

🌌 Les trous noirs, les trous blancs et les univers parallèles

Ce paragraphe explore les implications de la solution de Schwarzschild étendue à son maximum, qui suggère la possibilité d'univers parallèles et de trous blancs. Il est expliqué que la géométrie de l'espace-temps peut permettre la création d'un diagramme de Penrose, qui montre les différentes régions de l'univers, y compris les trous noirs, les trous blancs et les univers parallèles. Les trous blancs sont décrits comme des régions où la matière est expulsée plutôt que吸收ée, et les ponts d'Einstein-Rosen sont introduits comme des possibilités hypothétiques de voyage entre univers.

30:07

🌀 Les trous noirs tournoyants et les voyages interuniversitaires

Ce paragraphe décrit la découverte de Roy Kerr, qui a trouvé une solution pour un trou noir tournoyant, introduisant de nouvelles couches et une structure différente par rapport aux trous noirs non tournoyants. Il est expliqué que l'ergosphère et les horizons internes et externes sont créés par la rotation, et que la singularité peut être un anneau plutôt qu'un point, permettant potentiellement de traverser le trou noir. La possibilité de voyager à travers des trous noirs tournoyants vers d'autres univers est également abordée.

35:10

🚀 Les trous de ver et les voyages interstellaires

Ce paragraphe examine la possibilité de trous de ver stables et contrôlables qui pourraient être utilisés pour le voyage interstellaire par une civilisation avancée. Il est mentionné que bien que la relativité générale d'Einstein permette la théorie de tels trous de ver, ils nécessiteraient une matière exotique avec une densité d'énergie négative, qui n'a pas été observée et est considérée comme improbable. Le paragraphe conclut que, selon notre compréhension actuelle, les trous de ver traversables et les univers parallèles ne sont probablement pas une réalité, bien que l'on ne sût jamais avec certitude dans la physique.

Mindmap

Keywords

💡Tronçonneuse noire

Une tronçonneuse noire est un objet astronomique dont l'attraction gravitationnelle est si forte que rien, pas même la lumière, ne peut s'échapper après avoir traversé l'horizon d'événement. Dans le script, l'effet de la gravité est illustré par l'exemple d'une fusée qui semble ralentir et le passage à l'horizon d'événement où la lumière devient tellement rougeshiftée qu'elle disparaît de la vue.

💡Théorie de la relativité générale

La théorie de la relativité générale est la théorie de la gravitation développée par Albert Einstein, qui décrit la manière dont la masse influence le temps et l'espace. Elle est mentionnée dans le script comme la théorie qui prédit l'existence des trous noirs et de leur opposé, les trous blancs, ainsi que les univers parallèles et les possibilités de voyages entre eux.

💡Équations d'Einstein

Les équations d'Einstein sont un ensemble de quatre équations différentielles qui décrivent le champ gravitationnel dans l'espace-temps. Elles sont décrites dans le script comme étant le résultat d'une décennie de travail d'Einstein et sont essentielles pour comprendre la courbure de l'espace-temps causée par la matière et l'énergie.

💡Singualrité

Une singularité est un point dans l'espace où la densité de la matière est infinie, et où les lois de la physique classique cessent d'être valides. Dans le script, la singularité est mentionnée comme un point au centre d'une masse où les équations de Schwarzschild conduisent à des valeurs infinies, ce qui indique un point où les lois physiques actuelles ne sont pas applicables.

💡Horizon d'événement

L'horizon d'événement est la frontière au-delà de laquelle rien ne peut s'échapper d'une tronçonneuse noire, y compris la lumière. Le script explique que les observateurs externes ne peuvent pas voir quoi que ce soit passer l'horizon d'événement, mais que quelqu'un qui traverse l'horizon ne remarquerait rien d'anormal.

💡Chandrasekhar limit

La limite de Chandrasekhar est la masse maximale qu'une étoile peut avoir pour être soutenue par la pression de déréférencement des électrons, empêchant ainsi son effondrement. Le script mentionne cette limite comme un point critique dans la compréhension de la formation des étoiles blanches et des trous noirs.

💡Effet de degénération des neutrons

L'effet de degénération des neutrons est une force qui résiste à la compression d'une étoile quand elle est suffisamment massive pour que la pression de déréférencement des électrons ne soit pas suffisante. Dans le script, il est expliqué que cette pression soutient les étoiles à neutrons et empêche leur effondrement en trous noirs.

💡Tronçonneuse blanche

Une tronçonneuse blanche est un objet hypothétique qui, contrairement à une tronçonneuse noire, éjecterait de la matière et l'énergie dans l'univers plutôt qu'en absorbant tout. Le script explore l'idée de la tronçonneuse blanche comme le 'temps inverse' d'une tronçonneuse noire, avec une membrane qui éjecte la matière à l'intérieur.

💡Univers parallèle

Un univers parallèle est un univers distinct du nôtre, qui pourrait exister selon certaines théories physiques. Le script aborde l'idée que les trous noirs pourraient être connectés à des univers parallèles, offrant la possibilité de voyager d'un univers à l'autre.

💡Pont d'Einstein-Rosen

Un pont d'Einstein-Rosen, ou wormhole, est une hypothétique structure qui relie deux points distants de l'espace-temps. Dans le script, il est décrit comme une connexion potentielle entre les univers, offrant un moyen de voyager à travers l'espace et le temps.

💡Tronçonneuse tournoyante

Une tronçonneuse tournoyante est une tronçonneuse noire qui possède de la rotation. Le script explique que la rotation crée des couches distinctes et modifie la structure de l'horizon, y compris la création d'une ergosphère où l'espace est entraîné avec la rotation de la tronçonneuse noire.

Highlights

You can never see anything enter a black hole; instead, objects appear to freeze in time and fade away.

The general theory of relativity predicts the existence of black holes, white holes, and even parallel universes.

Newton struggled with the concept of gravity acting at a distance without mediation, which Einstein resolved with the idea of spacetime curvature.

Schwarzschild's solution to Einstein's equations described how spacetime curves around a spherical mass, leading to the concept of black holes.

Black holes have a singularity where the laws of physics break down, and an event horizon beyond which nothing can escape.

White holes, theoretical opposites of black holes, expel matter and cannot be entered from the outside.

Einstein and other scientists initially doubted the existence of black holes due to the extreme conditions required for their formation.

Oppenheimer and Volkoff showed that neutron stars also have a maximum mass, leading to the conclusion that some stars could collapse into black holes.

The concept of event horizons creates the appearance that nothing can ever enter a black hole from an outside observer's perspective.

Spacetime can be visualized as a flow, where near the event horizon, space falls inward at the speed of light, making escape impossible.

Different coordinate systems can remove the apparent singularity at the event horizon, revealing the possibility of matter crossing into black holes.

Rotating black holes, described by Kerr's solution, have multiple horizons and an ergosphere where space itself is dragged around.

Inside a rotating black hole, there is a ring singularity that theoretically could be passed through to reach other universes or an 'anti-verse.'

Penrose diagrams help visualize how different regions of spacetime are connected, including the potential for wormholes linking parallel universes.

Traversable wormholes require exotic matter with negative energy density, which is currently considered physically unrealistic.

Transcripts

00:00

- You can never see anything enter a black hole.

00:03

(bell dings)

00:04

Imagine you trap your nemesis in a rocket ship

00:07

and blast him off towards a black hole.

00:10

He looks back at you shaking his fist at a constant rate.

00:14

As he zooms in, gravity gets stronger,

00:17

so you would expect him to speed up,

00:19

but that is not what you see.

00:21

Instead, the rocket ship appears to be slowing down.

00:25

Not only that, he also appears

00:27

to be shaking his fist slower and slower.

00:30

That's because from your perspective,

00:32

his time is slowing down

00:35

at the very instant when he should cross the event horizon,

00:38

the point beyond which not even light can escape,

00:41

he and his rocket ship do not disappear,

00:45

instead, they seem to stop frozen in time.

00:51

The light from the spaceship gets dimmer and redder

00:54

until it completely fades from view.

00:57

This is how any object would look

00:59

crossing the event horizon.

01:01

Light is still coming from the point where he crossed,

01:04

it's just too redshifted to see,

01:08

but if you could see that light,

01:10

then in theory you would see everything

01:12

that has ever fallen into the black hole

01:14

frozen on its horizon, including the star that formed it,

01:19

but in practice, photons are emitted at discreet intervals,

01:22

so there will be a last photon emitted outside the horizon,

01:26

and therefore these images will fade after some time.

01:29

- This is just one of the strange results

01:32

that comes outta the general theory of relativity,

01:34

our current best theory of gravity.

01:36

The first solution of Einstein's equations

01:38

predicted not only black holes,

01:40

but also their opposite, white holes.

01:43

It also implied the existence of parallel universes

01:46

and even possibly a way to travel between them.

01:50

This is a video about the real science of black holes,

01:53

white holes, and wormholes.

01:56

- The general theory of relativity

01:58

arose at least in part due to a fundamental flaw

02:00

in Newtonian gravity.

02:02

In the 1600s Isaac Newton

02:04

contemplated how an apple falls to the ground,

02:06

how the moon orbits the earth and earth orbits the sun

02:09

and he concluded that every object with mass

02:12

must attract every other,

02:14

but Newton was troubled by his own theory.

02:17

How could masses separated by such vast distances

02:20

apply a force on each other?

02:22

He wrote, "That one body may act upon another at a distance

02:26

through a vacuum without the mediation of anything else

02:29

is to me, so great and absurdity that I believe no man

02:33

who has a competent faculty of thinking

02:34

could ever fall into it."

02:38

One man who definitely had a competent faculty of thinking,

02:42

was Albert Einstein and over 200 years later,

02:45

he figured out how gravity is mediated.

02:48

Bodies do not exert forces on each other directly.

02:52

Instead, a mass like the sun curves the spacetime

02:55

in its immediate vicinity.

02:58

This, then curves the spacetime around it

03:00

and so on all the way to the earth.

03:03

So the earth orbits the sun, because the spacetime

03:06

earth is passing through is curved.

03:09

Masses are affected by the local curvature

03:12

of spacetime, so no action at a distance is required.

03:16

Mathematically, this is described

03:18

by Einstein's field equations.

03:20

Can you write down the Einstein field equation?

03:23

- This was the the result of Einstein's decade of hard work

03:26

after special relativity

03:28

and essentially what we've got in the field equations

03:30

on one side it says,

03:32

tell me about the distribution of matter and energy.

03:34

The other side tells you what the resultant curvature

03:37

of spacetime is from that distribution

03:40

of matter and energy and it's a single line.

03:43

It looks like, oh, this is a simple equation, right?

03:46

But it's not really one equation.

03:47

It's a family of equations and to make life more difficult,

03:51

they're coupled equations, so they depend upon each other

03:54

and they are differential equations,

03:56

so it means that there are integrals

03:58

that have to be done, da, da da.

04:00

So there's a whole bunch of steps that you need to do

04:02

to solve the field equations.

04:04

To see what a solution to these equations would look like,

04:07

we need a tool to understand spacetime.

04:11

So imagine your floating around in empty space.

04:14

A flash of light goes off above your head

04:16

and spreads out in all directions.

04:19

Now your entire future, anything that can

04:22

and will ever happen to you will occur within this bubble

04:27

because the only way to get out of it

04:29

would be to travel faster than light.

04:31

In two dimensions, this bubble is just a growing circle.

04:35

If we allow time to run up the screen

04:37

and take snapshots at regular intervals,

04:39

then this light bubble traces out a cone,

04:41

your future light cone.

04:43

By convention, the axes are scaled so that light rays

04:46

always travel at 45 degrees.

04:48

This cone reveals the only region of spacetime

04:51

that you can ever hope to explore and influence.

04:55

Now imagine that instead of a flash of light

04:57

above your head, those photons were actually traveling in

05:00

from all corners of the universe

05:02

and they met at that instant

05:03

and then continued traveling on

05:05

in their separate directions.

05:08

Well, in that case then into the past,

05:10

these photons also reveal a light cone,

05:13

your past light cone.

05:15

Only events that happened inside this cone

05:17

could have affected you up to the present moment.

05:21

We can simplify this diagram even further

05:23

by plotting just one spatial and one time dimension.

05:26

This is the spacetime diagram of empty space.

05:29

If you want to measure how far apart

05:31

two events are in spacetime, you use something called

05:34

the spacetime interval.

05:36

The interval squared is equal to minus dt squared,

05:39

plus dx squared, since spacetime is flat,

05:43

the geometry is the same everywhere

05:45

and so this formula holds throughout the entire diagram,

05:48

which makes it really easy to measure the separation

05:50

between any two events, but around a mass,

05:54

spacetime is curved and therefore you need to modify

05:57

the equation to take into account the geometry.

06:00

This is what solutions to Einstein's equations are like.

06:04

They tell you how spacetime curves

06:06

and how to measure the separation between two events

06:09

in that curved geometry.

06:12

Einstein published his equations in 1915

06:15

during the First World War,

06:16

but he couldn't find an exact solution.

06:19

Luckily, a copy of his paper made its way

06:22

to the eastern front where Germany was fighting Russia,

06:25

stationed there was one of the best astrophysicists

06:27

of the time, Karl Schwarzschild.

06:30

Despite being 41 years old, he had volunteered

06:33

to calculate artillery trajectories for the German army.

06:36

At least until a greater challenge caught his attention,

06:40

how to solve Einstein's field equations.

06:45

Schwarzschild did the standard physicist thing

06:47

and imagined the simplest possible scenario,

06:49

an eternal static universe with nothing in it

06:52

except a single spherically symmetric point mass.

06:55

This mass was electrically neutral and not rotating.

06:59

Since this was the only feature of his universe,

07:01

he measured everything using spherical coordinates

07:04

relative to this center of this mass.

07:06

So r is the radius and theta and phi give the angles.

07:10

For his time coordinate, he chose time as being measured

07:13

by someone far away from the mass,

07:15

where spacetime is essentially flat.

07:18

Using this approach, Schwarzschild found the first

07:20

non-trivial solution to Einstein's equations,

07:23

which nowadays we write like this.

07:26

This Schwarzschild metric describes how spacetime curves

07:30

outside of the mass.

07:32

It's pretty simple and makes intuitive sense,

07:34

far away from the mass spacetime is nearly flat,

07:37

but as you get closer and closer to it,

07:39

spacetime becomes more and more curved,

07:41

it attracts objects in and time runs slower.

07:45

(gunshots firing)

07:47

Schwarzschild sent his solution to Einstein,

07:49

concluding with, "The war treated me kindly enough

07:52

in spite of the heavy gunfire

07:54

to allow me to get away from it all

07:55

and take this walk in the land of your ideas."

08:00

Einstein replied, "I have read your paper

08:02

with the utmost interest, I had not expected

08:04

that one could formulate the exact solution to the problem

08:06

in such a simple way."

08:12

But what seemed at first quite simple,

08:15

soon became more complicated.

08:17

Shortly after Schwarzschild solution was published,

08:19

people noticed two problem spots.

08:22

At the center of the mass, at r equals zero,

08:25

this term is divided by zero, so it blows up to infinity

08:30

and therefore this equation breaks down

08:32

and it can no longer describe what's physically happening.

08:35

This is what's called a singularity.

08:38

Maybe that point could be excused,

08:40

because it's in the middle of the mass,

08:42

but there's another problem spot outside of it

08:45

at a special distance from the center

08:47

known as the Schwarzschild radius, this term blows up.

08:50

So there is a second singularity. What is going on here?

08:57

Well, at the Schwarzschild radius,

09:00

the spacetime curvature becomes so steep

09:02

that the escape velocity, the speed that anything would need

09:06

to leave there is the speed of light

09:10

and that would mean that inside the Schwarzschild radius,

09:13

nothing, not even light would be able to escape.

09:17

So you'd have this dark object

09:18

that swallows up matter and light,

09:22

a black hole, if you will,

09:26

but most scientists doubted that such an object could exist,

09:29

because it would require a lot of mass

09:31

to collapse down into a tiny space.

09:35

How could that possibly ever happen?

09:39

(thrilling music)

09:40

Astronomers at the time were studying

09:42

what happens at the end of a star's life.

09:44

During its lifetime the inward force of gravity is balanced

09:47

by the outward radiation pressure

09:49

created by the energy released through nuclear fusion,

09:52

but when the fuel runs out, the radiation pressure drops.

09:55

So gravity pulls all the star material inwards, but how far?

10:01

Most astronomers believed some physical process

10:04

would hold it up and in 1926,

10:07

Ralph Fowler came up with a possible mechanism.

10:10

Pauli's exclusion principles states that,

10:11

"Fermions like electrons cannot occupy the same state,

10:15

so as matter gets pushed closer and closer together,

10:18

the electrons each occupy their own tiny volumes,"

10:21

but Heisenberg's uncertainty principle says that,

10:23

"You can't know the position and momentum of a particle

10:26

with absolute certainty, so as the particles become

10:29

more and more constrained in space,

10:32

the uncertainty in their momentum,

10:34

and hence their velocity must go up."

10:37

So the more a star is compressed,

10:39

the faster electrons will wiggle around

10:41

and that creates an outward pressure.

10:44

This electron degeneracy pressure would prevent the star

10:47

from collapsing completely.

10:49

Instead, it would form a white dwarf

10:51

with the density much higher than a normal star

10:54

and remarkably enough astronomers had observed stars

10:57

that fit this description.

10:58

One of them was Sirius B.

11:04

But the relief from this discovery was short-lived.

11:06

Four years later, 19-year-old Subrahmanyan Chandrasekhar

11:09

traveled by boat to England to study with Fowler

11:12

and Arthur Eddington, one of the most revered scientists

11:15

of the time.

11:17

During his voyage, Chandrasekhar realized

11:19

that electron degeneracy pressure has its limits.

11:22

Electrons can wiggle faster and faster,

11:24

but only up to the speed of light.

11:27

That means this effect can only support stars

11:30

up to a certain mass, the Chandrasekhar limit.

11:33

Beyond this, Chandrasekhar believed,

11:35

not even electron de degeneracy pressure

11:37

could prevent a star from collapsing,

11:40

but Eddington was not impressed.

11:42

He publicly blasted Chandrasekhar saying,

11:45

"There should be a law of nature

11:47

to prevent a star from behaving in this absurd way"

11:51

and indeed scientists did discover a way

11:53

that stars heavier than the Chandrasekhar limit

11:55

could support themselves.

11:58

When a star collapses beyond a white dwarf,

12:00

electrons and protons fuse together

12:02

to form neutrinos and neutrons.

12:05

These neutrons are also fermions,

12:07

but with nearly 2000 times the mass an electron,

12:10

their degeneracy pressure is even stronger.

12:13

So this is what holds up neutron stars.

12:16

There was this conviction among scientists

12:19

that even if we didn't know the mechanism,

12:21

something would prevent a star from collapsing

12:23

into a single point and forming a black hole,

12:28

because black holes were just too preposterous to be real.

12:34

The big blow to this belief came in the late 1930s

12:38

when Jay Robert Oppenheimer and George Volkoff

12:40

found that neutron stars also have a maximum mass.

12:44

Shortly after Oppenheimer and Hartland Snyder

12:47

showed that for the heaviest stars,

12:49

there is nothing left to save them when their fuel runs out,

12:53

they wrote, "This contraction will continue indefinitely,"

12:58

but Einstein still couldn't believe it.

13:00

Oppenheimer was saying that stars can collapse indefinitely,

13:03

but when Einstein looked at the math,

13:05

he found that time freezes on the horizon.

13:08

So it seemed like nothing could ever enter,

13:11

which suggested that either

13:12

there's something we don't understand

13:14

or that black holes can't exist,

13:17

(star explodes)

13:21

but Oppenheimer offered a solution to the problem.

13:23

He said to an outside observer,

13:26

you could never see anything go in,

13:27

but if you were traveling across the event horizon,

13:31

you wouldn't notice anything unusual

13:33

and you'd go right past it without even knowing it.

13:37

So how is this possible?

13:39

We need a spacetime diagram of a black hole.

13:43

On the left is the singularity at r equals zero.

13:46

The dotted line at r equals 2M is the event horizon.

13:49

Since the black hole doesn't move,

13:51

these lines go straight up in time.

13:55

Now let's see how ingoing and outgoing light ray travel

13:58

in this curved geometry.

14:01

When you're really far away,

14:02

the future light cones are at the usual 45 degrees,

14:06

but as you get closer to the horizon,

14:07

the light cones get narrower and narrower,

14:11

until right at the event horizon,

14:13

they're so narrow that they point straight up

14:16

and inside the horizon, the light cones tip to the left,

14:22

but something strange happens with ingoing light rays.

14:26

- They fall in, but they don't get to r equals 2M,

14:29

they actually asymptote to that value

14:32

as time goes to infinity,

14:34

but they don't end at infinity, right?

14:36

Mathematically they are connected and come back in

14:41

and they're traveling in this direction

14:44

and this bothered a lot of people,

14:46

this bothered people like Einstein,

14:48

because he looked at these equations and went,

14:50

"well, if nothing can cross this sort of boundary,

14:55

then how could there be black holes?

14:57

How could black holes even form?"

15:00

- So what is going on here?

15:02

Well, what's important to recognize

15:04

is that this diagram is a projection.

15:06

It's basically a 2D map

15:08

of four dimensional curved spacetime.

15:12

It's just like projecting the 3D Earth onto a 2D map.

15:15

When you do that, you always get distortions.

15:18

There is no perfectly accurate way

15:20

to map the earth onto a 2D surface,

15:22

but different maps can be useful for different purposes.

15:25

For example, if you wanna keep angles and shapes the same,

15:28

like if you're sailing across the ocean

15:30

and you need to find your bearings,

15:31

you can use the Mercator projection,

15:33

that's the one Google Maps uses.

15:35

A downside is that it misrepresent sizes.

15:39

Africa and Greenland look about the same size,

15:42

but Africa is actually around 14 times larger.

15:46

The Gall-Peters projection keeps relative sizes accurate,

15:49

but as a result, angles and shapes are distorted.

15:53

In a similar way, we can make different projections

15:56

of 4D spacetime to study different properties of it.

16:00

Physical reality doesn't change,

16:01

but the way the map describes it does.

16:05

- He had chosen to put a particular coordinate system

16:07

of a space and have a time coordinate, and off you go.

16:11

It's the most sensible thing to do, right?

16:14

- [Derek] People realize that if you choose

16:15

a different coordinate system

16:17

by doing a coordinate substitution, then the singularity

16:20

at the event horizon disappears.

16:23

- It goes away.

16:24

That problem goes away and things can actually cross

16:27

into the black hole.

16:30

- What this tells us is that there is

16:32

no real physical singularity at the event horizon.

16:36

It just resulted from a poor choice of coordinate system.

16:41

Another way to visualize what's going on

16:44

is by describing space as flowing in towards the black hole,

16:48

like a waterfall.

16:49

As you get closer, space starts flowing in

16:52

faster and faster.

16:54

Photons emitted by the spaceship have to swim

16:56

against this flow, and this becomes harder and harder

17:00

the closer you get.

17:02

Photons emitted just outside the horizon

17:04

can barely make it out, but it takes longer and longer.

17:09

At the horizon, space falls in

17:11

as fast as the photons are swimming.

17:13

So if the horizon had a finite width,

17:16

then photons would get stuck here,

17:18

photons from everything that ever fell in,

17:21

but the horizon is infinitely thin.

17:23

So in reality, photons either eventually escape or fall in.

17:29

Inside the horizon, space falls faster

17:31

than the speed of light,

17:33

and so everything falls into the singularity.

17:36

So Oppenheimer was right.

17:38

Someone outside a black hole can never see anything enter

17:42

because the last photons they can see

17:44

will always be from just outside the horizon,

17:48

but if you yourself go,

17:50

you will fall right across the event horizon

17:52

and into the singularity.

17:55

Now you can extend the waterfall model

17:57

to cover all three spatial dimensions,

17:59

and that gives you this, a real simulation

18:02

of space flowing into a static black hole

18:05

made by my friend Alessandro from ScienceClic.

18:08

Later we'll use this model to see what it's like

18:10

falling into a rotating black hole.

18:16

Now, I've never been sucked into a black hole,

18:18

but sometimes it feels like it when I'm stuck on the phone

18:20

with a spam collar.

18:22

Fortunately, today's sponsor Incogni can help.

18:25

You know, I used to get several spam calls a day,

18:28

and they frustrated me so much that I wrote a letter

18:31

to the Do Not Call registry to get my number removed,

18:33

but that didn't work

18:35

and so I wanted to go on the offensive.

18:37

I even contemplated making a video

18:40

where I just mess with spam callers to get some revenge

18:43

for all the frustration and lost time,

18:45

but I no longer have to do that thanks to Incogni.

18:48

There are a lot of data brokers out there

18:50

that suck up information about you, a bit like a black hole.

18:54

They collect things like your name, phone number,

18:56

email address, and even your social security number

18:59

and then they sell this information on the open market,

19:03

which is why we often get calls from people

19:05

that we've never even given our number to.

19:08

Incogni battles these data brokers,

19:11

you simply give them permission and they figure out

19:13

who out there has your data, which laws apply,

19:16

and then they send them the right letter,

19:18

with the correct legal terms to each data broker

19:21

with the request to remove your information.

19:23

Now, you could do this yourself,

19:25

but it's a super tedious process that would take days,

19:27

weeks, even months,

19:29

and then you'd have to keep doing it forever.

19:32

So that's something I definitely don't have the time

19:35

and energy for, but Incogni makes this really easy.

19:39

Just sign up and they'll give you a list of companies

19:41

that have your data, the severity of each claim,

19:44

and the status of each request.

19:46

So far, they have filed 126 requests for me,

19:49

83 of which have been completed saving me over

19:52

62 hours of work, but the best part is since I signed up,

19:56

I've hardly gotten any more spam calls.

19:58

So to try Incogni and fight against the data brokers,

20:01

visit incog.com/veritasium.

20:04

You can click that link down in the description

20:06

or scan the QR code right here

20:08

and make sure to use the code veritasium to get 60% off.

20:12

So head over to incog.com/veritasium to get started.

20:16

I wanna thank Incogni for sponsoring this part of the video

20:19

and now back to spacetime maps.

20:22

If you take this map and transform it

20:25

so that incoming and outgoing light ray

20:27

all travel at 45 degrees like we're used to,

20:30

then something fascinating happens.

20:33

The black hole singularity on the left

20:35

transforms into a curved line at the top

20:40

and since the future always points up in this map,

20:44

it tells us that the singularity is not actually

20:47

a place in space, instead, it's a moment in time,

20:52

the very last moment in time for anything

20:55

that enters a black hole.

20:58

The map we've just created is a Kruskal-Szekers diagram,

21:02

but this only represents a portion of the universe,

21:04

the part inside the black holes event horizon

21:07

and the part of the universe closest to it,

21:10

but what we can do is contract the whole universe,

21:13

the infinite past, infinite distance, and infinite future,

21:17

and morph it into a single map.

21:20

It's like using the universe's best fish eye lens.

21:24

That gives us this penrose diagram.

21:28

Again, light rays still always go at 45 degrees.

21:31

So the future always points up.

21:33

The infinite past is in the bottom of the diagram.

21:36

The infinite future at the top

21:39

and the sides on the right are infinitely far away.

21:42

The black hole singularity is now a straight line

21:44

at the top, a final moment in time.

21:49

These lines are all at the same distance

21:51

from the black hole.

21:52

So the singularity is at r equals zero,

21:55

the horizon is at r equals 2M,

21:57

this line is at r equals 4M,

21:59

and this is infinitely far away.

22:02

All of these lines are at the same time.

22:05

What's great about this map is that it's very easy to see

22:09

where you can still go and what could have affected you.

22:12

For example, when you're here, you've got a lot of freedom.

22:15

You can enter the black hole or fly off to infinity,

22:19

and you can see and receive information from this area,

22:23

but if you go beyond the horizon,

22:25

your only possible future is to meet the singularity.

22:29

You can still, however, see and receive information

22:32

from the universe.

22:33

You just can't send any back out.

22:36

Now think about being at this point in the map.

22:39

This is at the event horizon,

22:41

and now your entire future is within the black hole,

22:45

but what is the past of this moment?

22:48

Well, you can draw the past light cone

22:51

and it reveals this new region.

22:54

If you're inside this region,

22:56

you can send signals to the universe,

22:58

but no matter where you are in the universe,

23:00

nothing can ever enter this region

23:02

because it will never be inside your light comb.

23:06

So things can come out, but never go in.

23:09

This is the opposite of a black hole, a white hole.

23:15

What color is a white hole?

23:18

(Geraint exhales)

23:19

(Derek laughs)

23:20

- I mean, it's gonna be the,

23:22

it's not gonna have a color, right?

23:24

It's gonna be whatever's being spat out of it.

23:27

It depends what's in there and gets thrown out,

23:31

that's what you are going to see.

23:33

So if it's got light in there, it's got mass in there,

23:35

it's all gonna be ejected.

23:36

So the white hole kind of picture

23:39

is the time reverse picture of a black hole,

23:42

instead of things falling in, things get expelled outwards

23:46

and so whilst a black hole has a membrane,

23:51

the Schwarzschild horizon, which once you cross,

23:53

you can't get back out, the white hole has the opposite.

23:56

If you're inside the event horizon, you have to be ejected,

23:59

so it kicks you out kind of thing, right?

24:01

Relativity doesn't tell you which way time flows.

24:04

There's nothing in there that says that, that is the future

24:08

and that is the past.

24:10

When you are doing your mathematics

24:12

and you're working out the behavior of objects,

24:15

you make a choice about which direction is the future,

24:19

but mathematically, you could have chosen

24:21

the other way, right?

24:22

You could have had time point in the opposite direction.

24:25

Any solution that you find in relativity,

24:28

mathematically, you can just flip it

24:30

and get a time reverse solution

24:32

and that's also a solution to the equations.

24:36

- [Derek] Now, we've been showing things

24:37

being ejected to the right, but they could just as well

24:40

be ejected to the left.

24:42

So what's over there?

24:44

This line is not at infinity,

24:46

so there should be something beyond it.

24:49

If we eject things in this direction,

24:51

you find that they enter a whole new universe,

24:55

one parallel to our own.

25:01

- [Geraint] We can fall into this black hole,

25:03

and somebody in this universe here

25:05

could fall into this black hole in their universe,

25:08

and we would find ourselves in the same black hole.

25:11

(Derek chuckles)

25:12

- The only downside is that

25:14

we'd both soon end up in the singularity.

25:18

I guess I'm just trying to understand

25:20

where that universe appears

25:22

in the mathematical part of the solution.

25:24

Like, can you point to the part of the equation and be like,

25:27

so that's our universe, and then these terms here,

25:30

that's the other universe, or do you know what I mean?

25:32

Like- - Yeah,

25:33

well, it's coordinates, right?

25:35

Imagine somebody, right, came up with a coordinate system

25:40

for the earth, but only the northern hemisphere

25:43

and you looked at that coordinate system, right?

25:45

And you looked at it and you said,

25:47

"Ah, I can see the coordinate system, it looks fine,

25:50

but mathematically latitudes can be negative, right?

25:55

You've only got positive latitudes in your solution.

25:58

What about the negative ones?"

25:59

And they said to you, (scoffs) "Negative ones?

26:02

No southern hemisphere, right?"

26:05

And you've gotta go, "Well, the mathematics says that

26:08

you can have negative latitudes.

26:09

Maybe we should go and look over the equator

26:12

to see if there is something down there"

26:13

and I know that's a kind of extreme example,

26:16

because we know we live on a globe,

26:17

but we don't know the full geometry

26:20

of what's going on here in the sense that

26:22

Schwarzschild laid down coordinates

26:24

over part of the solution.

26:26

It was like him only laying down coordinates

26:28

on the northern hemisphere

26:30

and other people have come along and said,

26:32

"Hey, there's a southern hemisphere"

26:34

and more than that, there's two earths.

26:36

That's why it's called maximal extension.

26:39

It's like, if I have this mathematical structure,

26:43

then what is the extent of the coordinates

26:47

that I can consider?

26:49

And with the Schwarzschild black hole,

26:51

you get a second universe

26:52

that has its own independent set of coordinates

26:56

from our universe.

26:57

I want to emphasize right, this is the simplest solution

27:00

to the Einstein field equations,

27:02

and it already contains a black hole,

27:03

white hole and two universes.

27:05

- [Derek] That's what you get

27:07

when you push this map to its limits

27:09

so that every edge ends at a singularity or infinity.

27:13

- And in fact, there's another little feature in here,

27:16

which is that, that little point there where they cross,

27:19

that is an Einstein Rosen Bridge.

27:24

- To see it, we need to change coordinates.

27:27

Now this line is at constant crustal time

27:30

and it connects the space of both universes.

27:33

You can see what the spacetime is like

27:35

by following this line from right to left.

27:38

Far away from the event horizon,

27:39

spacetime is basically flat,

27:41

but as you get closer to the event horizon,

27:43

spacetime starts to curve more and more.

27:46

At this cross, you are at the event horizon,

27:49

and if you go beyond it, you end up in the parallel universe

27:53

that gives you a wormhole that looks like this.

27:59

- So that is hypothetically how we could use a black hole

28:04

to travel from one universe to another.

28:06

- Hypothetically, because these wormholes

28:08

aren't actually stable in time.

28:11

- It's a bit like a bridge, but it's a bridge that is long

28:14

and then becomes shorter and then becomes long again

28:17

and if you try to traverse this bridge,

28:19

at some point, the bridge is only very short, right?

28:21

And you say, "Oh, well, let me just cross this bridge."

28:23

But as you start crossing the bridge and start running,

28:25

your speed is finite, right?

28:27

The speed of light roughly and then the bridge starts,

28:30

becoming stretching and you never come out the other side.

28:35

- [Derek] This pinching off always happens too fast

28:38

for anything to travel through.

28:40

You can also see this if you look at the Penrose diagram,

28:43

because when you're inside one universe,

28:45

there isn't a light cone that can take you

28:47

to the other universe.

28:49

The only way to do that

28:50

would be to travel faster than light,

28:54

but there might be another way.

28:57

Schwarzschild solution describes a black hole

28:59

that doesn't rotate.

29:00

Yet, every star does rotate

29:02

and since angular momentum must be conserved,

29:04

every black hole must also be rotating.

29:08

While Schwarzschild found his solution within weeks

29:10

after Einstein published his equations,

29:12

solving them for a spinning mass

29:14

turned out to be much harder.

29:15

Physicists tried, but 10 years after Schwarzschild solution,

29:19

they still hadn't solved it.

29:21

10 years turned into 20, which turned into 40

29:24

and then in 1963, Roy Kerr found the solution

29:28

to Einstein's equations for a spinning black hole,

29:32

which is far more complicated than Schwarzschild solution

29:35

and this comes with a few dramatic changes.

29:40

The first is that the structure is completely different.

29:43

The black hole now consists of several layers.

29:47

It's also not spherically symmetric anymore.

29:50

This happens because the rotation

29:52

causes it to bulge around the equator.

29:54

So it's only symmetric about its axis of spin.

29:59

Alessandro from science click simulated what happens

30:02

around this spinning black hole.

30:07

Space gets dragged around with the black hole

30:10

taking you and the particles along with it.

30:13

When you get closer, space gets dragged around

30:15

faster and faster until it goes around faster

30:19

than the speed of light,

30:20

you've now entered into the first new region,

30:24

the ergosphere.

30:26

No matter how hard you fire your rockets here,

30:29

it's impossible to stay still relative to distance stars,

30:33

but because space doesn't flow directly inward,

30:36

you can still escape the black hole.

30:39

When you travel in further, you go through the next layer,

30:42

the outer horizon, the point of no return.

30:46

Here you can only go inwards,

30:49

but as you get dragged in deeper and deeper,

30:52

something crazy happens, you enter another region,

30:57

one where you can move around freely again,

31:00

so you're not doomed to the singularity.

31:03

You're now inside the inner event horizon.

31:07

Here you can actually see the singularity

31:12

- In a normal black hole, it's a point,

31:13

but it in a rotating black hole,

31:14

it actually expands out to be a ring

31:17

and there are weird things happened

31:19

with spacetime inside the center of a black hole,

31:22

a rotating black hole,

31:23

but it's thought that you can actually

31:24

fly through the singularity.

31:29

- [Derek] We need a Penrose diagram

31:31

of a spinning black hole, where before the singularity

31:35

was a horizontal line at the top

31:37

here, the singularity lifts up and moves to the sides,

31:40

revealing this new region inside the inner horizon.

31:45

Here we can move around freely and avoid the singularity,

31:49

but these edges aren't at infinity or a singularity,

31:53

so there must be something beyond them.

31:55

Well, when you venture further,

31:57

you could find yourself in a white hole,

32:00

which would push you out into a whole nother universe.

32:05

- You can have these pictures whereby

32:08

you're in one universe, you fall into a rotating black hole,

32:12

you fly through the singularity,

32:14

and you pop out into a new universe from a white hole,

32:18

and then you can just continue playing this game.

32:21

- Extending this diagram infinitely far.

32:25

but there is still one thing we haven't done,

32:27

brave the singularity.

32:30

So you aim straight towards the center of the ring

32:33

and head off towards it, but rather than time ending,

32:37

you now find yourself in universe, a strange universe,

32:40

one where gravity pushes instead of pulls.

32:44

This is known as an anti-verse.

32:48

If that's too weird, you can always jump back

32:50

across the singularity and return to a universe

32:53

with normal gravity.

32:55

- And I know this is basically science fiction, right?

32:57

But if you take the solutions of relativity at,

33:02

you know, essentially at face value and add on a little bit,

33:05

which is what Penrose does here, he says this,

33:07

"oh look, these shapes are very similar,

33:10

I can just stick these together."

33:12

Then this is the conclusion that you get.

33:14

Now we have effectively an infinite number

33:17

of universes all connected with black hole, white holes

33:20

all the way through and you, of you go to explore,

33:25

but it'll be a very brave person who's the first one

33:28

who's gonna leap into a rotating black hole

33:30

to find out if this is correct?

33:31

(Derek chuckles)

33:33

- Yeah, I would not sign up for that.

33:35

So could these maximally extended Schwarzschild

33:38

and Kerr solutions actually exist in nature?

33:41

Well, there are some issues.

33:43

Both the extended Schwarzschild and Kerr solutions

33:46

are solutions of eternal black holes in an empty universe.

33:50

- As you say, it's an eternal solution.

33:52

So it stretches infinitely far into the past

33:55

and infinitely far into the future

33:57

and so there's no formation mechanism in there,

33:59

it's just a static solution

34:02

and I think that is part of the,

34:07

part of the reason why black holes

34:10

are realized in our universe and white holes aren't-

34:15

- Or might not be.

34:16

- Or might not be,

34:16

or I'm reasonably I,

34:18

personally, I'm reasonably confident

34:20

that they don't exist, right?

34:22

- [Derek] For the maximally extended Kerr solution,

34:24

there's also another problem.

34:26

If you're an immortal astronaut inside the universe,

34:28

you can send light into the black hole,

34:31

but because there's infinite time compressed

34:34

in this top corner, you can pile up light along this edge,

34:37

which creates an infinite flux of energy

34:40

along the inner horizon.

34:42

This concentration of energy

34:43

then creates its own singularity,

34:46

sealing off the ring singularity and beyond.

34:50

- My suspicion and the suspicion

34:51

of some other people in the field is that

34:55

this inner horizon will become singular

34:56

and you will not be able to go through these second copies.

34:59

- So all the white holes, wormholes, other universes

35:03

and anti universes disappear.

35:06

Does that mean that real wormholes are impossible?

35:10

In 1987, Michael Morris and Kip Thorne looked at wormholes

35:13

that an advanced civilization could use

35:15

for interstellar travel, ones that have no horizons,

35:18

so you can travel back and forth, are stable in time,

35:20

and have some other properties like

35:22

being able to construct them.

35:24

They found several geometries that are allowed

35:26

by Einstein's general relativity.

35:28

In theory, these could connect different parts

35:31

of the universe, making a sort of interstellar highway.

35:34

They might even be able to connect to different universes.

35:39

The only problem is that all these geometries

35:42

require an exotic kind of matter

35:44

with a negative energy density

35:45

to prevent the wormhole from collapsing.

35:48

- This exotic kind of matter,

35:50

is really against the loss of physics, so it's,

35:54

I have the prejudice that it will not exist.

35:56

I'm bothered by the fact that we say that

35:58

the science fiction wormholes are mathematically possible.

36:01

It's true, it's mathematically possible

36:03

in the sense that there's some geometry that can exist,

36:05

but Einstein's theory is not just geometries,

36:09

it's geometries plus field equations.

36:12

If you use the kinds of properties of matter

36:14

that matter actually has, then they're not possible.

36:17

So I feel that the reason they're not possible

36:20

is very strong.

36:22

- So according to our current best understanding,

36:25

it seems likely that white holes, traversable wormholes,

36:28

and these parallel universes don't exist,

36:32

but we also used to think that black holes didn't exist.

36:35

So maybe we'll be surprised again.

36:38

- I mean, we have one universe, right?

36:41

Good, why can't we have two.

36:46

(whimsical music)