Merge Models Locally While Fine-Tuning on Custom Data Locally - LM Cocktail
Summary
TLDRهذا الفيديو يشرح كيفية دمج نماذج الذكاء الاصطناعي في طريقة مبتكرة باستخدام "LM cocktail"، الذي ينتمي إلى مشروع أكبر يسمى "flag embedding". يركز المشروع على تطوير النماذج الآلية المبنية على الاسترداد، والتي تشمل مشاريع متنوعة مثل النموذج ال pitkä السياق والنماذج المدمجة والموديلات المرتبة. يوضح الفيديو كيفية تحسين أداء النموذج الفردي وتثبيت "LM cocktail" على نظام لينكس محلي، واستخدامه لدمج النماذج من خلال استيراد بيانات معينة. يمكن استخدام "LM cocktail" لتحسين أداء النموذج في مجال محدد دون تقليل قدراته العامة، أو لإنشاء نموذج لمهام جديدة دون التدريب أو تعزيز الأداء في المهام التالية من خلال استغلال المعرفة الأخرى. يحتوي الفيديو على خطوات لإنشاء بيئة conda وتثبيت الحزم المطلوبة، وتسجيل الدخول إلى Hugging Face Hub ودمج النماذج مع البيانات المقدمة.
Takeaways
- 🍹 **LM Cocktail**: LM cocktail es una herramienta que permite la fusión de modelos de lenguaje para mejorar su rendimiento en un dominio específico sin disminuir sus capacidades generales.
- 🔍 **Flag Embedding**: El proyecto Flag Embedding se enfoca en la recuperación mejorada de LLMs (Modelos de Lenguaje Grandes) y consiste en varios proyectos y herramientas, incluyendo el LM cocktail.
- 💻 **Instalación Local**: Se describe el proceso de instalación del LM cocktail en un sistema Linux local, destacando la importancia de crear un entorno virtual para la instalación.
- 📈 **Mejora del Rendimiento**: La fusión de modelos puede ser utilizada para mejorar el rendimiento en una tarea específica o generar un modelo para nuevas tareas sin necesidad de entrenarlo.
- 🧩 **Método de Fusión**: El LM cocktail utiliza una función simple para calcular los pesos de fusión, automatizando el proceso de combinar modelos base y modelos finamente afinados.
- 🚀 **Herramientas Adicionales**: Además del LM cocktail, existen otras herramientas como `merge` y `K` para combinar modelos, aunque el LM cocktail también fusiona los datos de entrenamiento.
- 💡 **Ventajas**: Una de las ventajas del LM cocktail es que no requiere un entrenamiento adicional del modelo una vez fusionado, lo que ahorra tiempo y recursos.
- 📚 **Datos de Ejemplo**: En el script, se utiliza una lista de datos ficticios para demostrar cómo el LM cocktail puede fusionar modelos en el contexto de estos datos.
- 🔗 **Hugging Face Hub**: Se menciona el uso del Hugging Face Hub para acceder y fusionar modelos, lo que requiere de un token de acceso.
- 🔧 **Repositorio**: Se hace referencia a un repositorio que contiene ejemplos y herramientas para fusionar modelos, incluyendo la capacidad de fusionar modelos de clasificación y de embedding.
- 🔁 **Proceso de Fusión**: El proceso de fusión puede tomar un tiempo significativo, incluyendo la descarga de modelos y la ejecución de la fusión en sí.
- 🌟 **Valor del Proyecto**: El script resalta la originalidad y el valor del proyecto LM cocktail, comparándolo con otras herramientas y proponiendo su uso para mejorar y crear modelos de lenguaje.
Q & A
LM cocktail في الفيديو يشير إلى؟
-LM cocktail في الفيديو يشير إلى جزء من مشروع أكبر يسمى flag embedding، وهو يركز على检索增强型的大型语言模型 (LLMs).
ما هي الفوائد المحتملة لدمج نماذج الLM؟
-دمج نماذج الLM يمكن أن يساعد على تحسين أداء نموذج واحد ويُمكن استخدامه لتحسين أداء على مجال مستهدف دون تقليل القدرات العامة، كما يمكن استخدامه لإنشاء نموذج لمهام جديدة دون إعادة التدريب.
كيف يمكن استخدام LM cocktail لتحسين أداء النموذج؟
-LM cocktail يستخدم لدمج النماذج الأساسية والنموذجات المخصصة بشكل تلقائي باستخدام دالة بسيطة لحساب أوزان الدمج، مما يمكن أن يساعد على تحسين أداء النموذج في مجال مستهدف.
ما هي الخطوات الأساسية لتثبيت LM cocktail على نظام لينكس محلي؟
-الخطوات الأساسية تشمل إنشاء بيئة conda، تنزيل flag embedding repo، وتثبيت المتطلبات اللازمة باستخدام pip command.
ماذا يشير إلى المصطلح "retrieval augmented LLMs"؟
-retrieval augmented LLMs يشير إلى النماذج النحوية الكبيرة التي تم تحسينها مع القدرة على استرداد المعلومات (retrieval) لتحسين أداء التحليل النصي.
كيف يمكن لLM cocktail أن يساعد في توليد نموذج لمهام جديدة؟
-LM cocktail يمكن أن يساعد في توليد نموذج لمهام جديدة من خلال دمج نموذج مع البيانات دون الحاجة إلى إعادة التدريب، مما يمكن أن يوفر نموذجًا مخصصًا للبيانات المعطاة.
ما هي الأدوات الأخرى المذكورة في الفيديو التي يمكن استخدامها لدمج النماذج؟
-المُتحدث في الفيديو يشير إلى وجود أدوات أخرى مثل Merch K التي يمكن استخدامها لدمج النماذج، ولكن لم يتم ذكر المزيد من التفاصيل.
ماذا تعني العبارة "you can simply go ahead and um merge two models"؟
-العبارة تشير إلى أن الشخص يستطيع بسهولة دمج نموذجين معًا باستخدام LM cocktail، بغض النظر عما إذا كانت النماذج ذات البيانات ذات الصلة أم لا.
كيف يمكن لLM cocktail أن يساعد في تحسين أداء المهام التالية؟
-LM cocktail يمكن أن يساعد في تحسين أداء المهام التالية من خلال دمج النماذج الأساسية والمخصصة واستخدام البيانات المعطاة لحساب أوزان الدمج، مما يمكن أن يعزز الأداء في المهام المرتبطة بالبيانات.
ما هي المتطلبات الأساسية لتشغيل LM cocktail؟
-المتطلبات الأساسية لتشغيل LM cocktail تشمل وجود بيئة Python، نصب الحزم اللازمة، والحصول على رمز الوصول من Hugging Face لتحميل ودمج النماذج.
كيف يمكن لLM cocktail أن يساعد في تحسين الأداء لمهام التحليل النصي؟
-LM cocktail يساعد في تحسين الأداء لمهام التحليل النصي من خلال دمج النماذج الأساسية والمخصصة واستخدام البيانات المعطاة لتحسين الأداء في مجالات محددة دون تقليل القدرات العامة.
ماذا تشير العبارة "BGE is basically by General embedding model" إلى؟
-العبارة تشير إلى أن BGE (Basic General Embedding) هو نموذج استرداد عام يمكن استخدامه في دمج النماذج، مما يساعد على تحسين الأداء في المهام المتعلقة بالتحليل النصي.
Outlines
🤖 Introduction to Model Merging with LM Cocktail
The video begins with an introduction to model merging, emphasizing its fun and beneficial aspects. It focuses on a particular method called 'LM cocktail,' which is part of the larger 'flag embedding' project. This project is centered on retrieval augmented language models (LLMs), including long context LLMs, ranker models, benchmarks, and more. The LM cocktail specifically is used for fine-tuning models and can enhance the performance of a single model. The video also covers installing the tool on a local Linux system, showcasing the system's specifications, and creating a conda environment for clean and organized installations. It concludes with cloning the flag embedding repository and installing the necessary requirements using pip.
🔄 Merging Models and Data with Hugging Face Hub
This paragraph demonstrates how to merge models using the LM cocktail tool after logging into the Hugging Face Hub with a token. It explains the process of importing the necessary libraries, defining dummy data for context, and using commands to merge models with data. The video shows how to merge two specific models, 'meta LLM to 7 billion chat' and 'some LLM to AG news,' using the Hugging Face Hub. It also highlights the ability to perform a simple merge without data, merge embedding models, and even merge ranking models. The process is not instantaneous and requires time for downloading and merging the models. The video concludes by showcasing additional functionalities of the repository and encourages viewers to subscribe and share the content.
Mindmap
Keywords
💡model merging
💡LM cocktail
💡flag embedding
💡fine-tuning
💡retrieval augmented LLMs
💡Hugging Face Hub
💡virtual environments
💡pip install
💡GPU
💡merging weights
💡target domain
💡new tasks
Highlights
Model merging is presented as a fun and beneficial process.
The concept of LM cocktail is introduced, which is part of the larger FLAG embedding project.
FLAG embedding focuses on retrieval augmented LLMs (Large Language Models).
LM cocktail is used for fine-tuning models, similar to crafting a nuanced cocktail.
Model merging can enhance the performance of a single model.
LM cocktail can be installed on a local Linux system.
The method automatically merges fine-tune models and base models using a function to compute merging weights.
LM cocktail is useful for large language models and dense embedding models.
It can improve performance on a target domain without decreasing general capabilities.
LM cocktail can generate a model for new tasks without fine-tuning.
The tool allows merging models with specific angles or datasets.
Merging with LM cocktail does not require further fine-tuning of the model.
The process of merging models and data is showcased with a demonstration.
A virtual environment named 'cocktail' is created for clean and separate installations.
Requirements for the project are installed using pip within the virtual environment.
Hugging Face Hub is used for logging in and merging models.
The merging process involves downloading models and can be time-consuming.
LM cocktail enables simple merges without data, embedding model merges, and ranking model merges.
The project is praised for its uniqueness and the ability to merge more than two models.
The presenter encourages viewers to subscribe and share the content for further assistance.
Transcripts
model merging is not only fun but also
beneficial in many ways in this video we
will be merging models in a very
particular Way by using this LM cocktail
LM cocktail is part of a larger project
called as flag embedding flag embedding
focuses on retrieval augmented llms
which consist of various other projects
tool such as long context llm and then
embedded models ranker models some of
the benchmarks and then there are few
other stuff too but for the purpose of
this video we will be focusing on this
LM
cocktail make this llm cocktail makes
fine-tuning of models same as crafting a
nuanced cocktail model merging can be
used to improve the performance of
single model and we will also install it
on our local system in Linux and then we
will merch the model with some
particular angle to
it this method which is called as LM
cocktail is very useful for large
language models and dense embedding
models and design the LM cocktail
strategy which automatically merges fine
tune models and base models using a
simple function to compute merging
weights LM cocktail can be used to
improve the performance on target domain
without decreasing the general
capabilities Beyond Target domain it can
also be used to generate a model for new
tasks without fine
tuning there are various ways that you
can use this LM cocktail you can simply
go ahead and um merge two models or you
can even merge the models as per your
own data set and that is what I wanted
to show you in this video because I have
covered like hundreds of other tools
which you can use to much these models
like merch K and there are various
others but I haven't seen any tool which
can merge the models plus it can also
merge the data which you want it to
train on and the advantage is that you
don't have to further fine-tune the
model so um you can just mix your model
with data and that can compute merging
weights based on given data and merge
model so it can be used to produce a
model for a new task without training or
boost the performance for the downstream
task by leveraging the knowledge in
other methods okay so of theory let's go
and get it installed on my local system
let me take you to my local system which
is I
running2 22.4 as you can see let me also
show you my GPU
card okay and sorry it's morning time my
fingers are still cold there you go you
see I am using uh a 10g card from Nvidia
and the vram is around
23 uh
GB my memory is 32 GB for for the
purpose of this video let me clear the
screen first thing you would need to do
is I would highly suggest you create a
cond
environment K or AA enables you to
create virtual environments and then it
keeps everything nice and clean
separately I already have K installed if
you don't know how to install it then
just search my channel for K and you
should be able to find find a very easy
video to follow to get it installed let
me clear the screen and then we will
create a k
environment I'm just creating a virtual
environment with python 3.11 and the
name is
cocktail don't take too long just press
y here and it is going to install it
that is done
let's activate the cond environment by
simply doing cond activate
cocktail and you see that now cocktail
is visible in the parenthesis let me
clear the screen and now let's in so
let's get clone that flag embedding
repo that is done to Let's CD to that
let me clear the contents and show you
it's contents there you go so all the
stuff is here let's clear the screen and
now we need to install all the
requirements and we will do that simply
by using pip command pip install d e do
and it is going to install everything in
our cond environment nice and clean
without any impact to your local system
let's wait for this to
finish all the prerequisites are done
let me clear the
screen because I will be merging Lama
model so we need to log into hugging
phas for that first let's inst install
hugging face _
Hub think I already should have it so I
have that is great and Let Me Now launch
my python interpreter where I will log
to hooking face and then we will mix the
models so for loging into hugging phas
you would need a token from hugging phas
so let's go back to our browser and then
this is the hugging phas website where
I'm logged in already on the top right
click on these three lines then on
settings on the left click on access
tokens let's grab a new token maybe just
for the test of it so I'm just going to
say it uh cocktail read is fine andate a
token and then let's grab this cocktail
token and then I'm going to take you
back to my terminal shortly just give me
a sec I'm opening and pasting it
there so what we need to do now is is to
Simply import the hugging face Hub that
is done and now we need to log in or
save our
to that is also done so that is all we
need to do in order to loog into huging
base now coming back to our cocktail
example first let's import mixing of
model from LM cocktail which we have
just installed and we are already in
that Library so let me press enter here
so both the libraries are imported
now now we will be merging a model in
the context of this data so I have just
defined a dummy data from the repo in
the example data list and we will be
giving this data as a context to these
merging
models and now in order to merge the
models all you need to do is to use this
commands that's it so mix models with
data and you are giving model names and
or there path so this is going to use
the hugging pH and it will merge these
two models meta Lama uh to 7 billion
chat and some sh Lama to AG news and
model type is decoder example data which
we just defined in our array you can
just replace it on your own and then
Randomness is just five and then let's
press
enter and it is going to download the
models of course so make sure that you
have that much space
already so let's wait for this model to
download and of course this merging and
this stuff will take time because this
is not a minute uh seconds process that
this takes over and overs so I will let
it run because it is going to take a lot
of time even after downloading merching
model is not um slow you know it's not a
very fast instant process so while that
happens uh let me show you a few more
things which are really cool from the
repo because not only you can merge it
with data but you can do a simple merge
you
see instead of doing it with data all
you can do just specify model name and
path and that's it if so you don't have
to specify the data if you want to merge
embedding models you can even do that if
you want to merge a ranking model you
can even do
that and then and BGE is basically by
General embeding
model and then you can even go with more
than two models how good is that and
then um with the data one I already
showed you so all in all Amazing Project
I mean I haven't really seen it anything
any project like that um as of
sure so that's it guys I hope that you
enjoyed it let me know what do you think
if you like the content please consider
subscribing to the channel and if you're
already subscribed then please share it
among your network as it helps a lot
thanks for watching
5.0 / 5 (0 votes)
Hugging Face GGUF Models locally with Ollama
How to Select an AI Model for Specific Domain or Task
"VoT" Gives LLMs Spacial Reasoning AND Open-Source "Large Action Model"
Stop paying for ChatGPT with these two tools | LMStudio x AnythingLLM
37% Better Output with 15 Lines of Code - Llama 3 8B (Ollama) & 70B (Groq)
Yes! I Finally Did It | 0 to 102 BROKE FC (Episode 5) - FC MOBILE