Apple's Silicon Magic Is Over!

Snazzy Labs
20 Apr 202417:32

Summary

TLDR视频脚本回顾了苹果M1芯片的革命性影响,它不仅提升了性能,还改善了Mac的散热问题,延长了电池寿命,且无需风扇。随后,M2芯片在性能和能效上进行了迭代提升,尽管面临散热挑战。而M3芯片在3nm工艺上的性能提升并未达到预期,表明工艺缩减带来的性能增益正在减少。视频提出,尽管苹果的硅片性能不再是问题,但面对高通等竞争对手的追赶,苹果需要在硬件设计上进行创新,如开发更轻薄的笔记本电脑或针对游戏和创作者市场的高性能笔记本电脑,以维持其市场领先地位。

Takeaways

  • 📈 苹果的M1芯片因其出色的性能和能效比,改变了市场对Mac电脑的看法,提供了前所未有的性能提升。
  • 🔥 M1的成功归功于Arm64架构、专用硬件模块和苹果从硬件到应用的深度垂直控制。
  • 🌡️ M2芯片通过采用更精细的制程和增加晶体管数量提升了性能,但也带来了更高的能耗和散热挑战。
  • 💻 M3芯片在3nm工艺上的性能提升没有达到预期,表明制程缩小带来的性能增益正在减少。
  • 💰 随着制程技术的进步,新节点的成本越来越高,这可能影响苹果未来芯片的性价比。
  • 🚀 高通正在开发新的Snapdragon X Elite SoC,旨在与苹果的芯片竞争,并已获得微软的支持。
  • 🔋 Snapdragon X Elite SoC的设计注重能效,提供了从轻薄笔记本到高性能设备的广泛适用性。
  • 📱 苹果的硅片优势不再是其产品的唯一卖点,随着技术的发展,其他厂商正在迎头赶上。
  • 🎮 苹果可以考虑开发新的MacBook设计,利用其硅片的性能和效率,推出更多样化的产品线。
  • 🌟 M1系列将作为苹果历史上最伟大的计算机之一被铭记,但苹果需要继续创新以保持领先。
  • ⏰ 苹果需要在其他厂商赶上之前,重新评估其产品策略,可能包括风险更大的创新设计。
  • 📘 苹果的硬件设计应该利用其硅片的性能,探索新的产品形态,以满足不同用户群体的需求。

Q & A

  • 为什么说五年前Mac电脑存在过热问题?

    -五年前,Mac电脑使用的是高热设计功率(TDP)的Intel处理器,配合的冷却系统却不足以应对,导致电脑容易过热,进而影响性能基准测试的得分。

  • 苹果硅片M1的推出对Mac电脑有哪些重大改变?

    -M1硅片的推出使得Mac电脑在保持轻薄设计的同时,性能提升了3.5倍,且不需要风扇散热。此外,电池续航时间比之前延长了50%,而价格并未上涨。

  • M1硅片的三个主要性能优势是什么?

    -M1硅片的性能优势包括:(1) 使用更现代的Arm64指令集架构,没有x86的遗留问题;(2) 拥有专门的芯片硬件模块,如视频引擎、神经网络引擎等,能更高效处理特定任务;(3) 从硬件到内核再到操作系统和应用程序的深度垂直控制,提高了整体的运行效率。

  • M2硅片与M1相比,有哪些改进?

    -M2硅片采用了TSMC的N5P工艺,性能提升了7%,同时功耗降低了约15%。此外,M2增加了晶体管的数量,从160亿增加到200亿,但这也使得M2在峰值状态下可能比M1更加耗电和发热。

  • M3硅片在性能上的提升为何没有达到预期?

    -M3硅片采用了TSMC的3nm工艺,但实际的晶体管密度提升并不如预期的2.8倍那么多。逻辑密度的提升约为1.7倍,而SRAM和IO密度几乎没有显著提升。因此,性能提升并没有达到预期的大规模增长。

  • 高通的Snapdragon X Elite SoC有哪些特点?

    -Snapdragon X Elite SoC是一款专为笔记本电脑设计的芯片,基于TSMC的4nm工艺制造,拥有12个高性能核心CPU、Adreno GPU和内置的Hexagon NPU。此外,还支持高达64GB的LPDDR5内存、Snapdragon X65 5G调制解调器和PCIe NVMe存储。

  • 为什么说苹果的硅片设计不再只是关于性能?

    -随着技术的发展,苹果的硅片设计已经达到了一定的物理极限,而且其他竞争对手正在迎头赶上。因此,苹果需要重新关注其硬件设计的其他方面,如创新的外形设计和功能的多样化,以保持其产品的竞争力。

  • 苹果的MacBook产品线目前存在哪些设计上的相似性?

    -苹果的MacBook产品线在设计、尺寸、体积、重量和功能集方面比以往任何时候都更为接近。尽管MacBook Air的显示屏和扬声器质量略低于14英寸的MacBook Pro,但整体上,这些机器的设计同质化程度很高。

  • 苹果硅片的性能每瓦特优势为何没有得到充分利用?

    -苹果硅片的性能每瓦特优势没有得到充分利用,因为没有一款笔记本电脑真正利用了这种性能优势所提供的外形设计潜力。例如,可以设计出比2015年12英寸MacBook更薄、更小、更轻的笔记本电脑,而不必受到低热设计功率(TDP)的Intel芯片和不良I/O的限制。

  • 对于苹果来说,为什么需要继续冒险和创新?

    -苹果在推出自己的硅片时采取了大胆而冒险的举措,这在M1系列上取得了巨大成功。然而,为了保持领先并避免其他竞争对手迎头赶上,苹果需要继续冒险和创新,开发出新的产品和功能,以维持其在市场中的领导地位。

  • 苹果未来的硅片设计应该考虑哪些因素?

    -苹果未来的硅片设计应该考虑包括性能、效率、成本效益、以及如何更好地利用其硅片的性能优势来创造独特的硬件设计。同时,还需要关注竞争对手的发展,以及市场和消费者的需求变化。

Outlines

00:00

😀 M1芯片的革命性影响及M2和M3的迭代发展

该段落回顾了五年前Mac电脑因高功耗Intel芯片和不足的散热导致的性能问题。随后,M1芯片的推出彻底改变了Mac的设计,不仅保持了轻薄,还实现了无风扇设计和更长的电池寿命。此外,M1 iMac和iPad Pro展示了苹果芯片在不同设备形态上的应用。尽管M2芯片在性能上有所提升,但也带来了更高的能耗和散热挑战。M3芯片在3nm工艺上的性能提升未达预期,表明工艺缩减带来的性能提升正在减少,且成本上升。

05:05

🤔 M3芯片的性能预期与现实差距

尽管M3芯片采用了TSMC的3nm工艺,但其性能提升并不如预期,原因在于新工艺的逻辑密度提升有限,且成本较高。此外,M2芯片虽然在性能上有所提升,但同时也面临更高的能耗和散热问题。这表明,尽管M2在性能每瓦上有所提升,但总体能耗在峰值时更高。

10:06

📈 高通骁龙X Elite与苹果芯片的竞争

高通骁龙X Elite是基于4nm工艺的定制笔记本芯片,拥有高性能CPU、GPU和NPU,支持高达64GB的LPDDR5内存和5G调制解调器。虽然其性能可能不及苹果的Pro、Max和Ultra芯片,但其低功耗设计和接近M3的性能表现显示出高通在芯片领域的野心和潜力。同时,微软和高通在软件优化方面的努力,以及未来可能集成高性能GPU的可能性,预示着苹果在芯片领域可能面临更激烈的竞争。

15:10

🚀 苹果硬件设计的创新与风险

该段落讨论了苹果MacBook产品线的设计同质化问题,并提出了创新的硬件设计思路,如开发更轻薄的笔记本电脑或针对游戏和创作者市场的强大笔记本。作者认为,尽管M1系列取得了巨大成功,但苹果需要继续创新和冒险,以保持在行业中的领先地位。

Mindmap

Keywords

💡Apple 硅片

Apple 硅片是指苹果公司自行设计并使用的处理器,它标志着苹果从使用 Intel 处理器转向自家设计的芯片。在视频中,Apple 硅片的推出被视为对传统笔记本电脑设计的重大突破,它不仅提高了性能,还改善了设备的能效比和散热问题。

💡M1 芯片

M1 芯片是苹果公司推出的首款自家设计的处理器,它在视频中被描述为一个革命性的产品,以其高效的性能和低功耗著称。M1 芯片的成功为后续的 M2 和 M3 芯片奠定了基础。

💡热设计功率(TDP)

热设计功率(TDP)是指计算机处理器在正常运行时所产生的热量,它直接影响到散热需求和系统稳定性。视频中提到,早期的 Mac 使用的 Intel 高 TDP 芯片与不足的散热设计组合,导致了性能问题。

💡指令集架构(ISA)

指令集架构(ISA)是计算机体系结构中用于执行程序指令的规范。视频中提到,Arm64 使用了更现代的 ISA,与 x86 架构相比,它没有历史包袱,能够更高效地执行代码。

💡统一内存池

统一内存池是 Apple 硅片中的一个特性,它允许不同类型的处理器共享同一块内存空间,从而提高数据访问效率。视频中提到,这种设计是 M1 芯片性能提升的关键因素之一。

💡性能每瓦特

性能每瓦特是衡量处理器能效的指标,表示每消耗一瓦特电能所能提供的计算性能。视频中强调,Apple 硅片的设计重点在于提供足够的性能同时保持极高的能效比。

💡Snapdragon X Elite

Snapdragon X Elite 是高通公司推出的一款针对笔记本电脑的系统芯片(SoC),它在视频中被提及,作为 Apple 硅片未来可能面临的竞争。这款芯片旨在提供高性能和高能效,可能会对 Apple 硅片构成挑战。

💡N3E 3nm 工艺

N3E 3nm 工艺是台积电(TSMC)的一种芯片制造工艺,它在视频中被用来讨论 M3 芯片的性能预期。尽管预期很高,但实际的性能提升并没有达到预期的大幅度跃升。

💡性能节流

性能节流是指当处理器温度过高时,系统会降低其运行速度以防止过热。视频中提到,尽管 M2 芯片的性能提升,但由于散热问题,它在高负载下可能会出现性能节流。

💡MacBook Air 与 MacBook Pro

MacBook Air 和 MacBook Pro 是苹果公司生产的两种笔记本电脑型号。视频讨论了它们在设计、性能和价格上的差异,并提出了对苹果未来产品线的期待,包括可能的新形式因素和创新。

💡技术极限

技术极限是指在当前科技水平下所能达到的最大性能或效率。视频中提到,苹果在设计 M1 系列芯片时取得了巨大成功,但随着技术的发展,其他公司正在迎头赶上,苹果需要继续创新以保持领先。

Highlights

5年前,Mac电脑因高热和性能下降而声名狼藉,但M1芯片的推出彻底改变了这一局面。

M1芯片不仅保持了Mac的轻薄设计,还实现了3.5倍的性能提升,并且不需要风扇。

M1芯片的电池续航比前代提升了50%,且价格没有增加。

MacBook Pro和M2 MacBook Air的重新设计修正了蝴蝶键盘的问题,恢复了MagSafe和其他I/O接口。

M1 iMac和iPad Pro证明了没有哪种形态对于Apple Silicon的高效率来说是太小的。

Apple当前的计算机产品线可能是有史以来最好的产品线之一。

M1芯片的三个主要性能驱动因素:Arm64架构、专用硬件模块和深度垂直控制。

M2芯片采用了更精细的N5P工艺,性能提升7%,功耗降低15%。

M2芯片的晶体管数量从160亿增加到200亿,但这也导致了更多的热量和功耗。

尽管M2在峰值时消耗更多能量,但其每瓦性能的提升意味着完成任务的速度更快,总体能耗更低。

M3芯片在TSMC的3nm工艺上的性能提升没有达到预期,晶体管密度的提升并不如预期那么大。

随着工艺节点的缩小,每次新的工艺节点的成本都在大幅增加。

Apple Silicon的优势不再仅仅在于硅片,而是需要关注于Apple的硬件设计。

高通展示了他们的Snapdragon X Elite SoC,这是一款为笔记本电脑设计的定制芯片,性能介于M2和M3之间。

Apple Silicon需要在保持足够性能的同时,重新关注极致的能效比。

Apple应该利用Apple Silicon的高能效比,设计出更轻薄、更小巧的笔记本电脑。

对于需要更强大性能的用户,Apple可以考虑在更大、更重的笔记本电脑中使用M3 ULTRA芯片。

自从M1系列以来,Apple需要再次冒险,推动技术创新,以免被竞争对手迎头赶上。

Transcripts

00:00

It's hard to believe that just over 5-years-ago,  I was ripping into the internals of brand-new Macs  

00:06

looking to hodge-podge a fix together, such that  they wouldn’t overheat and cause benchmark scores  

00:11

to plummet. High TDP Intel chips paired with  inadequate cooling made for a deadly combo—one  

00:17

that created the worst Macs in decades—but  then this happened: [insert M1 unveiling]

00:37

Apple silicon was a revelation to  what had been deemed an ill-suited  

00:42

form factor. Not only did they *keep* things  thin and light, but they launched with the  

00:47

literal identical MacBook Air chassis just  to prove—HEY—not only is this 3.5x faster,  

00:55

but we don’t even need a fan. Oh, and by  the way, we didn't touch the battery size  

00:59

at all but it lasts 50% longer than before.  Price increase? Nah. Send me a G and we coo.

01:06

The redesign of the MacBook Pro and M2 MacBook  Air righted the wrongs caused by the butterfly  

01:15

keyboard-sporting laptops of yore bringing  back MagSafe and other I/O, improving displays,  

01:20

speakers, keyboards, and more. Meanwhile, the M1  iMac and iPad Pro proved that no form factor was  

01:27

too small for this master-class in efficiency.  It’s not a stretch to say that Apple’s current  

01:32

computer lineup is not just Apple’s best ever,  but perhaps one of the best lineups ever from  

01:37

*any* company. But be warned, because changes  need to happen—and fast—if Apple wants that to  

01:44

continue being true into the future. Let's  tackle why the M3 series doesn't measure up  

01:49

to the almost physics-defying standards the M1  set at launch; and, how for the first time ever,  

01:54

real competition is just months away  from almost every PC maker imaginable.

02:00

I’ve talked a lot about why Apple silicon  has absolutely dominated since launch,  

02:06

but there were really three main drivers behind  M1’s incredible performance: (1) Arm64 itself uses  

02:15

significantly more modern (ISAs) instruction set  architectures that don’t carry the legacy baggage  

02:21

of x86—nerdy crap like weakly-ordered memory  models, a larger number of general-purpose  

02:30

registers for parallelizable code, etc., (2)  Apple’s dedicated on-chip hardware blocks like the  

02:37

video engines, Neural Engine, matrix coprocessor,  and unified memory pool, handle specific tasks  

02:51

vastly more capably than a general-compute  CPU or GPU, and, (3) deep vertical control  

02:59

from hardware to kernel to OS to application  helped eliminate cruft and streamline efficiency.

03:11

All of the work had to be paved for M1.  Sure, M2 and M3 benefit from that work,  

03:19

but they’ve been iterative—and Apple is now  somewhat limited in the same way everybody  

03:25

else is: transistor density. M1 launched  on TSMC’s 5nm process and unlike the 90s  

03:33

and 2000s when transistor density and node  naming actually correlated with one another,  

03:38

process names today like “5nm” don’t really mean  anything. There’s more to chips than logic gates  

03:43

and hardly any of those features precisely measure  at the marketed process size anyways. Regardless,  

03:50

the M1—not to even mention the M1 Max—was a an  enormous die that was not just the biggest TSMC  

03:58

5nm chip to date, but one of the largest Arm  chips ever produced period. So what do you do  

04:11

to get a faster chip like M2? There’s really  three options: (1) shrink the size and power  

04:19

consumption of the transistors so you can add  more of them in the same envelope, (2) keep  

04:27

the transistor size the same but increase the  number of them which makes for a larger die with  

04:33

greater heat and power drain, or, (3) keep the  transistor size and count the same but increase  

04:40

the voltage to push up the chip’s clock-speed  which creates even more heat and power drain.

04:47

M2 did a combination of options 1 and 2. They  were able to move to TSMC’s refined N5P process  

04:56

which netted both a 7% performance improvement  over N5 while drawing about 15% lower power;  

05:04

and then to speed things up even more, they  increased the total number of transistors  

05:08

from 16 billion to 20 billion. But this  increase didn’t come free. Do some shotty,  

05:16

“not really the full story” napkin math, and the  data would suggest the M2 is more power-hungry  

05:22

than M1—running hotter and drawing more energy  as a total package over its predecessor. And  

05:31

that’s not theoretical: we proved back when the  M2 MacBook Air launched that the chip was more  

05:36

difficult to keep cool and experienced more  rapid and more severe performance throttling  

05:41

due to those thermals. So why wasn’t this more  widely reported? Well, because M2’s performance  

05:51

per watt increased as well—not just total package  consumption. Imagine a high-performance sports  

05:58

car. The car runs hotter and consumes more fuel  when it reaches its top speeds, much like the M2;  

06:05

however, because it's so fast and efficient, it  can complete a 'race' much quicker than a regular  

06:12

car, reducing the total time it is running at  its hottest most fuel-consumptive state. So,  

06:19

while yes, the M2 consumed more total energy  at its peak, that extra compute was able to  

06:26

get tasks done more quickly—reducing time spent  at peak and therefore maintaining lower energy  

06:33

consumption per task relative to M1. Sounds  like a win-win—so what’s the problem? Sand, man.

06:51

When M3 launched on TSMC’s N3E 3nm process,  it was the first chip to do so—and performance  

06:59

expectations from pundits were high. I mean, doing  napkin math anew would suggest a 2.8x increase in  

07:05

transistor density—HUGE performance gains! But  then M3 came out and we got… a slightly better  

07:11

jump than we did from M1 to M2—and those on the  same process! Huh? Well, I guess we learned our  

07:19

lesson – using napkins for calculations can be as  messy as using a lipstick for math. First of all,  

07:30

TSMC’s 3nm node uses transistors that are  much physically larger than 3nm—they’re  

07:37

closer to 3.5. Okayyy, but even that would  suggest a 2x density increase. Ah, but only  

07:45

the logic density comes close at 1.7x.  SRAM and IO density barely increases at  

07:53

all. And chips—even magical ones—contain  all of these components. Realistically,  

07:59

there’s only about a 1.3x shrink. The era of  massive improvements from one process shrink  

08:05

to the next are over. The shrinks themselves are  now YEARS apart. And even worse, each new node  

08:14

is orders of magnitude more expensive than the  prior, per unit area. It’s estimated that Apple’s  

08:20

cost on these N3E chips is greater—not lesser—than  just using a bigger area on an older node. Alas,  

08:29

that would not yield the same  efficiency gains we’ve come to  

08:31

expect from Apple. More transistors on a  bigger chip means more heat. So what do?

08:45

We’ve spent several minutes getting really  nerdy and into the weeds on a lot of stuff  

08:48

that normal people don’t care about—and  at the end of the day, normal people buy  

08:56

the vast majority of Apple’s products. Sure,  the jump from M2 to M3 wasn’t as massive as  

09:01

expected and the jump from M3 to M4 will likely  be even smaller, but might I suggest something  

09:06

heretical for a minute? That’s OK! The silicon  isn’t the problem in Apple’s lineup any longer.

09:15

Look, Qualcomm invited me out to San Diego  a few weeks ago and I got to check out their  

09:28

reference design laptops (which basically  means they’re not real—they’re prototypes)  

09:33

for the Snapdragon X Elite SoC. You  may recall, a year-and-a-half-ago,  

09:41

we bought Microsoft’s Arm-based Windows  Dev Kit. It utilized the same Microsoft SQ3  

09:46

chip (which was just a rebranded Snapdragon  8cx gen3) found in a few quirky low-power,  

09:54

low-performance Windows laptops. No offense to  the folks at Qualcomm or Microsoft, but this thing  

09:59

sucked. Its performance under ideal conditions  was mediocre and ideal conditions were hard to  

10:06

come by because so much of the Windows experience  was wildly unoptimized for Arm—even after a decade  

10:11

following the original release of Windows RT.  But that was then—we live in the now. Not only  

10:18

has every single native app for Windows made  the transition to Arm, but massive quantities  

10:23

of 3rd party apps have too—including big ones—like  Google Chrome. Graphics APIs like DirectX, Vulkan,  

10:30

and OpenGL are said to work through mapping  layers and both Microsoft and Qualcomm have made  

10:36

huge efforts to ensure a smooth transition—they  were quick to volunteer that Apple is better at  

10:44

this than anyone and they hope to be compared to  them this summer when the X Elite laptops ship.

11:03

So, what is the Snapdragon X Elite? Well, they  gave me one in a cute little acrylic trading  

11:11

card. It is a bespoke laptop chip—not based on  a mobile chip—built on TSMC’s 4nm process coming  

11:20

with a 12 high-performance core CPU, Adreno  GPU, and in-house Hexagon NPU. Additionally,  

11:33

the on-board sensing hub houses an additional ISP,  on-board WiFi 7 by default, and the capability to  

11:39

be paired with up to 64GB of LPDDR5 memory,  a Snapdragon X65 5G modem, and NVMe storage  

11:46

over PCIe. The specs suggest Qualcomm is not  messing around—and from the benchmarks I saw,  

11:54

it consistently placed itself in between  the M2 and M3. Not shabby at all. Now,  

12:01

Apple is still certainly going to have the  upper hand with their Pro, Max, and Ultra chips,  

12:06

but this doesn’t aim to compete with those. While  OEMs can push the X Elite to run up to 90W for an  

12:12

extra performance boost, its reference-design  consumes just 24W peak. Very, very close to M3.

12:22

Now do I think that Qualcomm’s going to come out  blazing with the best laptop chips within the next  

12:27

3-years? Not really, no. But they’re hungry,  they’ve got Microsoft behind them, and they  

12:34

alluded to the fact that using heavy-duty GPUs  from NVIDIA or AMD wouldn’t be off the table in  

12:39

the future—something Apple has zero  aspirations for. And just like Apple, Intel,  

12:47

and everybody else, they’re really leaning into  their NPU for tasks that can use software-defined  

12:53

hardware for maximum efficiency and speed.  It’ll be exciting to see what form factors  

13:06

the Snapdragon X Elite embodies given its massive  power envelope available to OEMs—from netbooks to  

13:14

power-hungry beasts. Layer in the fact that this  is just their first foray into the X Elite line  

13:22

and that higher-performance chips are on the  roadmap, and well, we’ve got competition, baby.

13:28

So what’s Apple to do? Rush TSMC to the next  process shrink? Pivot to developing hotter  

13:34

more consumptive chips in the name of speed?  No. And Apple knows that’s not their core  

13:39

competency. Apple Silicon has always been about  sufficient performance with extreme efficiency,  

13:45

but physics are a cruel mistress and many  watching this channel don’t realize they’re  

13:50

already pushing up against boundaries that didn’t  exist for the M1 series. I still see comments that  

13:56

Apple silicon laptops are dead silent and  that’s just… dead wrong. We edit videos for  

14:06

this YouTube channel on a 14” M3 Max MacBook  Pro and the fans run at full-tilt nearly all  

14:13

the time—not just when exporting. And even with  fans ablaze, our NLE struggles to get exports  

14:21

out even close to the time the 16” MacBook  Pro can. It’s throttling—hard. Now, does it  

14:36

throttle to the point that it’s no faster than  an M3 Pro 14” MacBook Pro? No, but its sometimes  

14:44

slower than an M1 Max Mac Studio—something that  benchmarks would very much suggest is impossible.

14:54

My point here is that for years, Apple had  the exact same Intel chip SKUs as other  

15:02

computer makers. The silicon was never  their selling point. That is until M1,  

15:09

when that formula got flipped on its head and  Mac owners were—for the first time ever—able to  

15:15

be braggadocios about their computer’s speed. But  Apple is pushing against technological limits and  

15:21

others are catching up—so lets sit the silicon  aside for a minute and focus again on Apple’s  

15:27

hardware design. As I see it, the entire  MacBook lineup is basically the same. Sure,  

15:32

the Air has a lower-quality display and worse  speakers than the 14” MacBook Pro and the 15”  

15:37

Air is cheaper than the 16” Pro, but I mean  come on… these machines are closer in design,  

15:44

size, footprint, weight, and feature-set than  ever before. There’s no laptop that truly takes  

15:51

advantage of the form-factor provided by Apple  silicon’s insane performance per watt. Imagine  

15:58

a laptop even thinner, smaller, and lighter than  the 2015 12” MacBook—a computer that still feels  

16:04

impossible today—nearly a decade after its  release. Only this time, it doesn’t have to be  

16:10

hamstrung by a crappy low-TDP Intel chip and lousy  I/O. Would it be slower than an M3 Air? Sure. But  

16:20

how many people own—heck—a base M1 MacBook Air  and have never even approached the limits of that  

16:25

chip? I’d venture to say MOST—and if your silicon  can enable those impressive form factors… do it!

16:33

On the other end of the spectrum, why not  put an M3 ULTRA in a 16” laptop that’s a  

16:39

bit on the hefty-side—the style that gamers and  creators buy all the time on team Windows/Linux?  

16:44

A chip that just absolutely screams when  needed with the thermal headroom to do it,  

16:49

but while maintaining the excellent idle  efficiency offered by Apple’s low-power  

16:54

cores. It could be the first “gaming” laptop  with a battery that doesn’t die in like 4 hours.

17:00

What I'm getting at is this - when  Apple decided to make their own silicon,  

17:04

it was a bold, risky move. It paid off massively.  The M1 series will be remembered as some of the  

17:11

greatest computers ever. But it also feels like  that was the last time Apple really took a risk,  

17:19

and I think its time they stop sitting on  their laurels and get back to work before  

17:23

the rest of the industry catches up. What do  you think? Let me know in the comments below,  

17:28

but most importantly—and as always—stay snazzy.