Merge Models Locally While Fine-Tuning on Custom Data Locally - LM Cocktail

Fahd Mirza
10 May 202409:02

Summary

TLDRهذا الفيديو يشرح كيفية دمج نماذج الذكاء الاصطناعي في طريقة مبتكرة باستخدام "LM cocktail"، الذي ينتمي إلى مشروع أكبر يسمى "flag embedding". يركز المشروع على تطوير النماذج الآلية المبنية على الاسترداد، والتي تشمل مشاريع متنوعة مثل النموذج ال pitkä السياق والنماذج المدمجة والموديلات المرتبة. يوضح الفيديو كيفية تحسين أداء النموذج الفردي وتثبيت "LM cocktail" على نظام لينكس محلي، واستخدامه لدمج النماذج من خلال استيراد بيانات معينة. يمكن استخدام "LM cocktail" لتحسين أداء النموذج في مجال محدد دون تقليل قدراته العامة، أو لإنشاء نموذج لمهام جديدة دون التدريب أو تعزيز الأداء في المهام التالية من خلال استغلال المعرفة الأخرى. يحتوي الفيديو على خطوات لإنشاء بيئة conda وتثبيت الحزم المطلوبة، وتسجيل الدخول إلى Hugging Face Hub ودمج النماذج مع البيانات المقدمة.

Takeaways

  • 🍹 **LM Cocktail**: LM cocktail es una herramienta que permite la fusión de modelos de lenguaje para mejorar su rendimiento en un dominio específico sin disminuir sus capacidades generales.
  • 🔍 **Flag Embedding**: El proyecto Flag Embedding se enfoca en la recuperación mejorada de LLMs (Modelos de Lenguaje Grandes) y consiste en varios proyectos y herramientas, incluyendo el LM cocktail.
  • 💻 **Instalación Local**: Se describe el proceso de instalación del LM cocktail en un sistema Linux local, destacando la importancia de crear un entorno virtual para la instalación.
  • 📈 **Mejora del Rendimiento**: La fusión de modelos puede ser utilizada para mejorar el rendimiento en una tarea específica o generar un modelo para nuevas tareas sin necesidad de entrenarlo.
  • 🧩 **Método de Fusión**: El LM cocktail utiliza una función simple para calcular los pesos de fusión, automatizando el proceso de combinar modelos base y modelos finamente afinados.
  • 🚀 **Herramientas Adicionales**: Además del LM cocktail, existen otras herramientas como `merge` y `K` para combinar modelos, aunque el LM cocktail también fusiona los datos de entrenamiento.
  • 💡 **Ventajas**: Una de las ventajas del LM cocktail es que no requiere un entrenamiento adicional del modelo una vez fusionado, lo que ahorra tiempo y recursos.
  • 📚 **Datos de Ejemplo**: En el script, se utiliza una lista de datos ficticios para demostrar cómo el LM cocktail puede fusionar modelos en el contexto de estos datos.
  • 🔗 **Hugging Face Hub**: Se menciona el uso del Hugging Face Hub para acceder y fusionar modelos, lo que requiere de un token de acceso.
  • 🔧 **Repositorio**: Se hace referencia a un repositorio que contiene ejemplos y herramientas para fusionar modelos, incluyendo la capacidad de fusionar modelos de clasificación y de embedding.
  • 🔁 **Proceso de Fusión**: El proceso de fusión puede tomar un tiempo significativo, incluyendo la descarga de modelos y la ejecución de la fusión en sí.
  • 🌟 **Valor del Proyecto**: El script resalta la originalidad y el valor del proyecto LM cocktail, comparándolo con otras herramientas y proponiendo su uso para mejorar y crear modelos de lenguaje.

Q & A

  • LM cocktail في الفيديو يشير إلى؟

    -LM cocktail في الفيديو يشير إلى جزء من مشروع أكبر يسمى flag embedding، وهو يركز على检索增强型的大型语言模型 (LLMs).

  • ما هي الفوائد المحتملة لدمج نماذج الLM؟

    -دمج نماذج الLM يمكن أن يساعد على تحسين أداء نموذج واحد ويُمكن استخدامه لتحسين أداء على مجال مستهدف دون تقليل القدرات العامة، كما يمكن استخدامه لإنشاء نموذج لمهام جديدة دون إعادة التدريب.

  • كيف يمكن استخدام LM cocktail لتحسين أداء النموذج؟

    -LM cocktail يستخدم لدمج النماذج الأساسية والنموذجات المخصصة بشكل تلقائي باستخدام دالة بسيطة لحساب أوزان الدمج، مما يمكن أن يساعد على تحسين أداء النموذج في مجال مستهدف.

  • ما هي الخطوات الأساسية لتثبيت LM cocktail على نظام لينكس محلي؟

    -الخطوات الأساسية تشمل إنشاء بيئة conda، تنزيل flag embedding repo، وتثبيت المتطلبات اللازمة باستخدام pip command.

  • ماذا يشير إلى المصطلح "retrieval augmented LLMs"؟

    -retrieval augmented LLMs يشير إلى النماذج النحوية الكبيرة التي تم تحسينها مع القدرة على استرداد المعلومات (retrieval) لتحسين أداء التحليل النصي.

  • كيف يمكن لLM cocktail أن يساعد في توليد نموذج لمهام جديدة؟

    -LM cocktail يمكن أن يساعد في توليد نموذج لمهام جديدة من خلال دمج نموذج مع البيانات دون الحاجة إلى إعادة التدريب، مما يمكن أن يوفر نموذجًا مخصصًا للبيانات المعطاة.

  • ما هي الأدوات الأخرى المذكورة في الفيديو التي يمكن استخدامها لدمج النماذج؟

    -المُتحدث في الفيديو يشير إلى وجود أدوات أخرى مثل Merch K التي يمكن استخدامها لدمج النماذج، ولكن لم يتم ذكر المزيد من التفاصيل.

  • ماذا تعني العبارة "you can simply go ahead and um merge two models"؟

    -العبارة تشير إلى أن الشخص يستطيع بسهولة دمج نموذجين معًا باستخدام LM cocktail، بغض النظر عما إذا كانت النماذج ذات البيانات ذات الصلة أم لا.

  • كيف يمكن لLM cocktail أن يساعد في تحسين أداء المهام التالية؟

    -LM cocktail يمكن أن يساعد في تحسين أداء المهام التالية من خلال دمج النماذج الأساسية والمخصصة واستخدام البيانات المعطاة لحساب أوزان الدمج، مما يمكن أن يعزز الأداء في المهام المرتبطة بالبيانات.

  • ما هي المتطلبات الأساسية لتشغيل LM cocktail؟

    -المتطلبات الأساسية لتشغيل LM cocktail تشمل وجود بيئة Python، نصب الحزم اللازمة، والحصول على رمز الوصول من Hugging Face لتحميل ودمج النماذج.

  • كيف يمكن لLM cocktail أن يساعد في تحسين الأداء لمهام التحليل النصي؟

    -LM cocktail يساعد في تحسين الأداء لمهام التحليل النصي من خلال دمج النماذج الأساسية والمخصصة واستخدام البيانات المعطاة لتحسين الأداء في مجالات محددة دون تقليل القدرات العامة.

  • ماذا تشير العبارة "BGE is basically by General embedding model" إلى؟

    -العبارة تشير إلى أن BGE (Basic General Embedding) هو نموذج استرداد عام يمكن استخدامه في دمج النماذج، مما يساعد على تحسين الأداء في المهام المتعلقة بالتحليل النصي.

Outlines

00:00

🤖 Introduction to Model Merging with LM Cocktail

The video begins with an introduction to model merging, emphasizing its fun and beneficial aspects. It focuses on a particular method called 'LM cocktail,' which is part of the larger 'flag embedding' project. This project is centered on retrieval augmented language models (LLMs), including long context LLMs, ranker models, benchmarks, and more. The LM cocktail specifically is used for fine-tuning models and can enhance the performance of a single model. The video also covers installing the tool on a local Linux system, showcasing the system's specifications, and creating a conda environment for clean and organized installations. It concludes with cloning the flag embedding repository and installing the necessary requirements using pip.

05:00

🔄 Merging Models and Data with Hugging Face Hub

This paragraph demonstrates how to merge models using the LM cocktail tool after logging into the Hugging Face Hub with a token. It explains the process of importing the necessary libraries, defining dummy data for context, and using commands to merge models with data. The video shows how to merge two specific models, 'meta LLM to 7 billion chat' and 'some LLM to AG news,' using the Hugging Face Hub. It also highlights the ability to perform a simple merge without data, merge embedding models, and even merge ranking models. The process is not instantaneous and requires time for downloading and merging the models. The video concludes by showcasing additional functionalities of the repository and encourages viewers to subscribe and share the content.

Mindmap

Keywords

💡model merging

Model merging refers to the process of combining multiple machine learning models into one to improve performance. In the context of the video, model merging is used to enhance the capabilities of language models by leveraging the strengths of different models. An example from the script is the merging of 'Llama to 7 billion' and 'Shakespeare to AG news' models.

💡LM cocktail

LM cocktail is a tool mentioned in the video that facilitates the fine-tuning and merging of language models. It is part of the larger project 'flag embedding' and is used to create nuanced combinations of models. The script illustrates its use by showing how to install and apply it for merging models with specific data sets.

💡flag embedding

Flag embedding is a broader project that includes LM cocktail and focuses on retrieval augmented language models. It aims to enhance model performance through various tools and techniques. The video discusses how flag embedding is related to the merging of models and how it can be beneficial for large language models and dense embedding models.

💡fine-tuning

Fine-tuning is a technique in machine learning where a pre-trained model is further trained on a specific task to improve its performance on that task. The video explains that LM cocktail makes fine-tuning of models more efficient, allowing for the creation of models tailored to specific tasks without the need for further fine-tuning.

💡retrieval augmented LLMs

Retrieval augmented language models are a type of AI model that combines retrieval mechanisms with language models to enhance their capabilities. The video discusses how flag embedding, which includes LM cocktail, is focused on such models and how they can benefit from the merging process.

💡Hugging Face Hub

The Hugging Face Hub is a platform for sharing and discovering machine learning models, particularly in the field of natural language processing. In the video, the Hugging Face Hub is used to access and merge different models, showcasing its utility in the model merging process.

💡virtual environments

Virtual environments are isolated spaces for Python projects, allowing developers to manage dependencies and versions separately for different projects. The video script describes creating a virtual environment named 'cocktail' using the conda tool, which helps keep the system organized and the dependencies for the LM cocktail project isolated.

💡pip install

Pip is a package manager for Python that allows users to install and manage software packages. In the context of the video, 'pip install' is used to install the necessary requirements for the LM cocktail project within the created virtual environment.

💡GPU

A GPU, or Graphics Processing Unit, is a type of processor that's optimized for handling complex mathematical calculations, often used in machine learning tasks. The video mentions using an Nvidia GPU with 10GB VRAM for the computationally intensive process of model merging.

💡merging weights

Merging weights refer to the process of calculating the contribution of each model in the merged model. The LM cocktail tool automates this process, allowing for the creation of a single model that combines the knowledge from multiple models, as illustrated in the video by merging models based on given data.

💡target domain

A target domain is a specific area or task that a machine learning model is designed to perform well on. The video discusses how the LM cocktail strategy can be used to improve a model's performance on a target domain without diminishing its general capabilities.

💡new tasks

In machine learning, new tasks refer to problems or domains that a model hasn't been trained on. The video highlights that LM cocktail can be used to generate models for new tasks without the need for additional fine-tuning, leveraging the knowledge from other models.

Highlights

Model merging is presented as a fun and beneficial process.

The concept of LM cocktail is introduced, which is part of the larger FLAG embedding project.

FLAG embedding focuses on retrieval augmented LLMs (Large Language Models).

LM cocktail is used for fine-tuning models, similar to crafting a nuanced cocktail.

Model merging can enhance the performance of a single model.

LM cocktail can be installed on a local Linux system.

The method automatically merges fine-tune models and base models using a function to compute merging weights.

LM cocktail is useful for large language models and dense embedding models.

It can improve performance on a target domain without decreasing general capabilities.

LM cocktail can generate a model for new tasks without fine-tuning.

The tool allows merging models with specific angles or datasets.

Merging with LM cocktail does not require further fine-tuning of the model.

The process of merging models and data is showcased with a demonstration.

A virtual environment named 'cocktail' is created for clean and separate installations.

Requirements for the project are installed using pip within the virtual environment.

Hugging Face Hub is used for logging in and merging models.

The merging process involves downloading models and can be time-consuming.

LM cocktail enables simple merges without data, embedding model merges, and ranking model merges.

The project is praised for its uniqueness and the ability to merge more than two models.

The presenter encourages viewers to subscribe and share the content for further assistance.

Transcripts

00:02

model merging is not only fun but also

00:05

beneficial in many ways in this video we

00:08

will be merging models in a very

00:11

particular Way by using this LM cocktail

00:15

LM cocktail is part of a larger project

00:18

called as flag embedding flag embedding

00:21

focuses on retrieval augmented llms

00:24

which consist of various other projects

00:26

tool such as long context llm and then

00:29

embedded models ranker models some of

00:32

the benchmarks and then there are few

00:34

other stuff too but for the purpose of

00:36

this video we will be focusing on this

00:38

LM

00:40

cocktail make this llm cocktail makes

00:44

fine-tuning of models same as crafting a

00:46

nuanced cocktail model merging can be

00:50

used to improve the performance of

00:52

single model and we will also install it

00:55

on our local system in Linux and then we

00:57

will merch the model with some

01:00

particular angle to

01:02

it this method which is called as LM

01:05

cocktail is very useful for large

01:07

language models and dense embedding

01:09

models and design the LM cocktail

01:12

strategy which automatically merges fine

01:15

tune models and base models using a

01:17

simple function to compute merging

01:19

weights LM cocktail can be used to

01:22

improve the performance on target domain

01:25

without decreasing the general

01:26

capabilities Beyond Target domain it can

01:29

also be used to generate a model for new

01:31

tasks without fine

01:33

tuning there are various ways that you

01:36

can use this LM cocktail you can simply

01:40

go ahead and um merge two models or you

01:44

can even merge the models as per your

01:46

own data set and that is what I wanted

01:48

to show you in this video because I have

01:51

covered like hundreds of other tools

01:53

which you can use to much these models

01:55

like merch K and there are various

01:57

others but I haven't seen any tool which

02:00

can merge the models plus it can also

02:03

merge the data which you want it to

02:06

train on and the advantage is that you

02:08

don't have to further fine-tune the

02:10

model so um you can just mix your model

02:14

with data and that can compute merging

02:16

weights based on given data and merge

02:18

model so it can be used to produce a

02:21

model for a new task without training or

02:23

boost the performance for the downstream

02:26

task by leveraging the knowledge in

02:27

other methods okay so of theory let's go

02:31

and get it installed on my local system

02:34

let me take you to my local system which

02:37

is I

02:39

running2 22.4 as you can see let me also

02:43

show you my GPU

02:48

card okay and sorry it's morning time my

02:52

fingers are still cold there you go you

02:55

see I am using uh a 10g card from Nvidia

02:59

and the vram is around

03:03

23 uh

03:05

GB my memory is 32 GB for for the

03:08

purpose of this video let me clear the

03:10

screen first thing you would need to do

03:13

is I would highly suggest you create a

03:14

cond

03:16

environment K or AA enables you to

03:18

create virtual environments and then it

03:20

keeps everything nice and clean

03:22

separately I already have K installed if

03:25

you don't know how to install it then

03:27

just search my channel for K and you

03:29

should be able to find find a very easy

03:30

video to follow to get it installed let

03:33

me clear the screen and then we will

03:36

create a k

03:39

environment I'm just creating a virtual

03:41

environment with python 3.11 and the

03:43

name is

03:45

cocktail don't take too long just press

03:48

y here and it is going to install it

03:52

that is done

03:54

let's activate the cond environment by

03:57

simply doing cond activate

04:00

cocktail and you see that now cocktail

04:03

is visible in the parenthesis let me

04:06

clear the screen and now let's in so

04:09

let's get clone that flag embedding

04:14

repo that is done to Let's CD to that

04:19

let me clear the contents and show you

04:23

it's contents there you go so all the

04:27

stuff is here let's clear the screen and

04:30

now we need to install all the

04:32

requirements and we will do that simply

04:35

by using pip command pip install d e do

04:39

and it is going to install everything in

04:40

our cond environment nice and clean

04:43

without any impact to your local system

04:46

let's wait for this to

04:49

finish all the prerequisites are done

04:51

let me clear the

04:53

screen because I will be merging Lama

04:55

model so we need to log into hugging

04:57

phas for that first let's inst install

05:00

hugging face _

05:02

Hub think I already should have it so I

05:04

have that is great and Let Me Now launch

05:08

my python interpreter where I will log

05:10

to hooking face and then we will mix the

05:12

models so for loging into hugging phas

05:16

you would need a token from hugging phas

05:19

so let's go back to our browser and then

05:22

this is the hugging phas website where

05:23

I'm logged in already on the top right

05:25

click on these three lines then on

05:28

settings on the left click on access

05:30

tokens let's grab a new token maybe just

05:33

for the test of it so I'm just going to

05:35

say it uh cocktail read is fine andate a

05:41

token and then let's grab this cocktail

05:45

token and then I'm going to take you

05:48

back to my terminal shortly just give me

05:51

a sec I'm opening and pasting it

05:56

there so what we need to do now is is to

06:01

Simply import the hugging face Hub that

06:04

is done and now we need to log in or

06:08

save our

06:10

to that is also done so that is all we

06:13

need to do in order to loog into huging

06:15

base now coming back to our cocktail

06:18

example first let's import mixing of

06:21

model from LM cocktail which we have

06:23

just installed and we are already in

06:25

that Library so let me press enter here

06:30

so both the libraries are imported

06:33

now now we will be merging a model in

06:35

the context of this data so I have just

06:38

defined a dummy data from the repo in

06:40

the example data list and we will be

06:44

giving this data as a context to these

06:47

merging

06:49

models and now in order to merge the

06:51

models all you need to do is to use this

06:53

commands that's it so mix models with

06:56

data and you are giving model names and

06:59

or there path so this is going to use

07:01

the hugging pH and it will merge these

07:03

two models meta Lama uh to 7 billion

07:06

chat and some sh Lama to AG news and

07:10

model type is decoder example data which

07:13

we just defined in our array you can

07:14

just replace it on your own and then

07:17

Randomness is just five and then let's

07:19

press

07:21

enter and it is going to download the

07:24

models of course so make sure that you

07:26

have that much space

07:28

already so let's wait for this model to

07:30

download and of course this merging and

07:32

this stuff will take time because this

07:35

is not a minute uh seconds process that

07:38

this takes over and overs so I will let

07:41

it run because it is going to take a lot

07:43

of time even after downloading merching

07:45

model is not um slow you know it's not a

07:48

very fast instant process so while that

07:53

happens uh let me show you a few more

07:55

things which are really cool from the

07:58

repo because not only you can merge it

08:01

with data but you can do a simple merge

08:04

you

08:04

see instead of doing it with data all

08:07

you can do just specify model name and

08:09

path and that's it if so you don't have

08:12

to specify the data if you want to merge

08:15

embedding models you can even do that if

08:18

you want to merge a ranking model you

08:20

can even do

08:22

that and then and BGE is basically by

08:25

General embeding

08:27

model and then you can even go with more

08:30

than two models how good is that and

08:33

then um with the data one I already

08:36

showed you so all in all Amazing Project

08:39

I mean I haven't really seen it anything

08:41

any project like that um as of

08:46

sure so that's it guys I hope that you

08:48

enjoyed it let me know what do you think

08:50

if you like the content please consider

08:53

subscribing to the channel and if you're

08:55

already subscribed then please share it

08:57

among your network as it helps a lot

09:00

thanks for watching

Rate This

5.0 / 5 (0 votes)

Связанные теги
ذكاء اصطناعيدمج نماذجتحسين أداءLM cocktail flag embeddingretrieval augmentedhugging faceمحاكاة بياناتتطوير البرمجياتتعلم تلقائيالتعلم العميق
Вам нужно реферат на русском языке?